
F R A U N H O F E R I N S T I T U T E F O R C O G N I T I V E S Y S T E M S I K S

DEVOPS FOR DEVELOPING
CYBER-PHYSICAL SYSTEMS

A N D R E A S K R E U T Z , D R . G E R E O N W E I S S (F R A U N H O F E R I K S)

J O H A N N E S R O T H E , D R . M O R I T Z T E N O R T H (M A G A Z I N O G M B H)

A P R I L , 2 0 2 1

2 Kapitelname

In the age of digitalization, the success or failure of a product
depends on bug-free and feature-rich software. Driven by consumer
expectations and competition between vendors, software can no
longer be delivered as-is but needs to be continuously supported and
updated for a period of time. In large and complex projects, this
can be a challenging task, which many IT companies are approaching
with the state-of-the-art software development process DevOps.

For companies manufacturing high-tech products, software is also
becoming ever more critical, and companies are struggling with
handling the complexity of long-term software support. The adoption
of modern development processes such as DevOps is challenging,
as the real-world environment in which the systems operate induces
challenges and requirements that are unique to each product and
company. Once they are addressed, however, DevOps has the
potential to deliver more sophisticated products with minimal software
errors, thus increasing the value provided to customers and giving
the company a considerable competitive advantage.

ABSTRACT

3Kapitelname

TABLE OF CONTENTS

 1 TRADITIONAL SOFTWARE DEVELOPMENT AND DEVOPS 4

 1.1 Shortcomings of project-oriented development 4

 1.2 DevOps: A modern way of developing and

 releasing software 6

 2 CHALLENGES OF DEVOPS FOR CYBER-PHYSICAL SYSTEMS 9

 2.1 Dependency on hardware 9

 2.2 Complexity of the operations environment 10

 2.3 Non-deterministic behavior 10

 2.4 Unreliable machine learning algorithms 10

 2.5 Connectivity to the deployed systems 11

 2.6 Required specialization 11

 2.7 Unsuitable business models and customer relations 12

 2.8 Compliance to safety regulations 12

 3 THE WAY FORWARD 14

 3.1 Product lifecycle management 14

 3.2 Optimized testing pipeline 14

 3.3 Closing the loop 17

 3.4 Consolidation of engineering disciplines 17

 3.4 Continuous safety 17

 4 CONCLUSION AND OUTLOOK 18

 5 ACKNOLEDGEMENT 18

4 Traditional Software Development and DevOps

1 TRADITIONAL SOFTWARE
DEVELOPMENT AND DEVOPS

Software generates value. IT companies have realized
this long ago, as for them software and the means to
develop it are their main intellectual property.

Caused by the ongoing trend of digitalization, this
reality is also finding its way into industrial domains.
Innovations in computer technology have made it
possible to equip devices with powerful computing
units capable of executing sophisticated algorithms.
The physical components of such devices are con-
trolled and monitored by software, transforming
them into cyber-physical systems. Oftentimes, these
systems are also able to communicate with each
other, sharing knowledge and collaborating on tasks.

Cyber-physical systems enable a whole new range of
technologies, such as robotics, autonomous driving,
advanced medical devices and smart farming. Soft-
ware, thus, is gaining increasing importance in the
manufacturing domain as well and an efficient devel-
opment process becomes critical – often even more
critical than the manufacturing itself. Along with this,
business models are subject to changes from single
product sales to service-oriented subscription models
– driven by software innovation.

5Traditional Software Development and DevOps

1.1 SHORTCOMINGS OF PROJECT-
ORIENTED DEVELOPMENT

IT companies have been developing software for decades
and many innovations in terms of development processes
have been made. Traditional project-oriented develop-
ment is long obsolete, as it makes it very difficult to work
on large and complex pieces of software without intro-
ducing an unreasonable number of software bugs.

The main issue with project-oriented development is its
cumbersome software lifecycle. The stages of the lifecycle
(Figure 1) are clearly separated, and the entire software
goes through them as a whole. For complex software sys-
tems, this means that the development of new features
can take months or even years from start to finish.

Requirements

Design

Implementation

Verification

Operation

Figure 1: Software lifecycle in project-oriented development

In the end, a sizable set of new features can be released,
but such a large deployment can be very risky. Testing
might not have found all software errors, causing the en-
tire system to malfunction. Additionally, a slow time-to-
market of several months or years may cause many of the
features to already be obsolete at release.

Project-oriented development cannot create the continu-
ous stream of new features and bug fixes that customers
are demanding. Competition is fierce, so feature-oriented
time-to-market is essential to obtain a competitive advan-
tage over other companies.

Development Operations
Rele

as
e

Deploy

MonitorPlan

PlanCreate

Test

6 Traditional Software Development and DevOps

1.2 DEVOPS: A MODERN WAY OF
DEVELOPING AND RELEASING
SOFTWARE

The term DevOps refers to the attempt to unify the
development and the operations domain. It is a process
that is much more suitable to the previously mentioned
requirements of short time-to-market and high soft-
ware quality. DevOps approaches the unification of the
domains from both sides: Shift Right by adapting the
software lifecycle to how software is developed and Shift
Left by developing in an operations-like environment. A
successful DevOps process is only possible with a
culture change.

SHIFT RIGHT: INCREMENTAL CHANGES TO
STREAMLINE THE SOFTWARE LIFECYCLE

An agile, product-oriented method of development is
better suited to satisfy the requirements of modern soft-
ware. As already emphasized by wide-spread transitions
to agile working styles such as SCRUM and others, the
product needs to be viewed as never finished; it is always
only a product increment that will have to be continuous-
ly fixed, improved upon and extended with new features.
The notion of incremental change is central to modern
software development: each fix, improvement and added
feature should be as small as possible and developed in
a way that it leads to as few side effects as possible. This
reduces the impact of a change in that only a small part
of the software is affected by it.

Figure 2: In the DevOps software lifecycle, all stages are part of the same cyclic process and need

to be fine-tuned to each other to enable continuous improvement.

7Traditional Software Development and DevOps

SHIFT LEFT: DEVELOPMENT IN AN
OPERATIONS-LIKE ENVIRONMENT

The mindset “it works on my machine” can be very
harmful to the overall quality of software and its reliability
in production. To avoid this issue, developers need to be
aware of the environment in which the software will be
deployed. Ideally, the development environment should
be identical to the operations environment by making use
of virtualization techniques, simulators, and emulators.
If developing in an operations-like environment is not fea-
sible, the compatibility of the software needs to be at
least checked in the testing stage.

Shift Left means that the operations environment should
be brought as close as possible to development. The idea
behind this is to enable developers to learn from their
mistake when they implement a change that breaks in
production. The earlier their code is run in an operations-
like environment, the sooner they receive feedback, and
the shorter this feedback loop is, the greater the learning
effect. When considering a multi-stage testing pipeline,
this means that even smaller scoped tests in an early
stage should be run in an operations-like environment.

Shifting left also leads to better software quality, as well
as to software releases with less risk, because developers
are better equipped to write code that does not break
in production.

Shift Right means propagating this beneficial aspect of
development over the entire software lifecycle and, thus,
simplifying all stages: less extensive testing is required,
because tests that are not affected by a change do not
need to be executed. The deployment of a change is
associated with less risk, as fewer side effects mean less
potential for things to break. Finally, if a failure is detec-
ted in production, it is easier to identify its cause and to
roll-back to a previous version.

Shifting right leads to better software quality and a
shorter time-to-market, as the cause for failures is more
easily found and the software lifecycle as a whole is
leaner.

All tests pass All tests pass

Add code
and tests

Fix Rerun
tests

Fix

“It works on my machine” “Green-to-green”

8 Traditional Software Development and DevOps

ADOPTING A DEVOPS CULTURE

DevOps requires a rethinking of traditional company
structures. The traditionally separate development,
testing, deployment, and operations teams are replaced
by giving software engineers full ownership of the code
they write. This comes with the freedom of choosing how
to implement a change, but also with the responsibility
of making sure that their change does not break the soft-
ware in production.

Besides the change itself, developers, therefore, must
also write any necessary new tests and ensure that their
change does not have any detrimental side effects. Only
then will their change be integrated into the software
and deployed.

Full ownership is essential to guaranteeing that changes
are incremental and shifting right can be successful. From
the individual developer, this requires a change in mind-
set. The goal is to achieve a “green-to-green” mentality,
as shown in figure 3.

Ideally, the result of this is that the software is always in
a state that could be deployed to production. Moreover,
developers must be open to continuous improvement,
as the additional responsibilities that come with full
ownership call for proficiency in all stages of the software
lifecycle. This type of learning is enabled by shifting left.

Because the DevOps culture already places a lot of
demand on engineers, rich tooling support has been
developed in the last decades that automates many daily
tasks. Maximizing automation leads to a lean software
lifecycle, making sure that DevOps can be applied to its
full potential.

Figure 3: The effect of two different mentalities on code quality: a developer with the mindset “it works on my machine” considers

their work done, when the tests that they have added pass. With the “green-to-green“ mindset, the developer also considers issues

in other parts of the code base that were introduced by their change. For them, the change was only successfully implemented,

when all tests pass again.

9Challenges

2 CHALLENGES

Shift left and shift right in combination with a culture change have proven to be invaluable for IT companies
that work on complex software systems. Major digital corporations such as Facebook [1], Netflix [2] and Spotify
[3] rely on DevOps to ensure the reliability and competitiveness of their products.

Just as the digital products developed by these companies, modern cyber-physical systems also rely more
and more on sophisticated software algorithms to deliver functionality. This causes the development focus
to shift from the mechanical and electronical components themselves to the software controlling them.
The complexity of this software creates the need for modern development processes that allow for incremen-
tal development with rapid feedback from operations. Embracing the DevOps process can satisfy this need;
however, several challenges complicate the adoption.

2.1 DEPENDENCY ON HARDWARE

The software of a cyber-physical system provides fun-
ctionality by using sensors to collect data from the
physical world, processing it and then using actuators to
interact with the environment. What the system can do,
therefore, is limited by the kind of sensors and actuators
that it has access to. Moreover, the processing of data is
limited by the computational resources available. Adding
new features, thus, is not simply a matter of writing code
but might also necessitate adapting the hardware plat-
form. Such hardware changes inherently are time-consu-
ming, expensive and cannot happen in the same incre-
mental fashion as software changes.

This means that not all development activities can be seen
as incremental changes to an unfinished product. Some
software updates make hardware updates necessary, and
these will have to happen in a planned modular way or in
traditional release cycles of several months or years.

For the customer, the added functionality provided by
a new hardware version might not justify the cost of
acquiring it. Some customers will, therefore, not upgrade
and instead keep operating their legacy version. Over
time, this leads to many different hardware versions with
different properties and capabilities being deployed in
the field and requires backwards compatibility to a certain
extend. Developing, testing, deploying and operating
software on a diverse set of devices increases complexity
significantly, for example because each release has to be
tested for each hardware version.

10 Challenges

2.2 COMPLEXITY OF THE OPERATIONS
ENVIRONMENT

Shift left requires that changes need to be tested in an
operations-like environment as soon as possible. The
operations environment of cyber-physical systems, how-
ever, is the real world, which means that many aspects
need to be considered when replicating it for testing.
Some of these systems also interact with their environ-
ment which might lead to unpredicted situations.

Additionally, a cyber-physical system’s operation environ-
ment for technical reasons alone differs substantially from
its development environment. Solution approaches from
web-engineering, for instance, cloud-native development,
cannot be adopted easily to cyber-physical systems.
Setting up a one-to-one recreation of the environment
for hardware-in-the-loop testing is impossible and even
simulators might struggle to capture the level of detail
needed for meaningful testing.

In addition, simulators with sufficient fidelity require lots
of computing power and physical tests in a lab setup are
costly with regards to hardware, space requirements and
operating personnel. A complete shift left is, therefore,
impossible, as it would be prohibitively expensive.

2.3 NON-DETERMINISTIC BEHAVIOR DUE
TO SENSOR AND ACTUATOR NOISE

Robots and other cyber-physical systems that act in the
real world take decisions based on noisy sensor data,
which can cause non-deterministic behavior. The com-
bination of complex environment constellations, sensor
noise and inaccurate actuation can lead to errors that
happen with a certain probability, but that cannot easily
be traced down and reproduced. Such rare problems
require a high number of tests to discover and to ensure,
with the necessary statistical significance, that they are
indeed resolved. This, however, leads to longer testing
times and therefore longer cycle times for a release.

2.4 UNRELIABLE MACHINE LEARNING
ALGORITHMS

In recent and upcoming applications, another source of
oftentimes unexplainable non-determinism are machine
learning algorithms, such as deep neural networks.
As most advanced functions provided by cyber-physical
systems rely on perception or other inputs from machine
learning, the reliability of learned models becomes es-
sential. Current learning approaches, however, result in
black-box models that can make predictions with good
average accuracy, but that are incapable of explaining
which aspects of the input data have led to a result and
are often overconfident. Thus, the given confidence
of a classification is in general not sufficiently reliable for
making safety-critical decisions.

11Challenges

2.5 CONNECTIVITY TO THE DEPLOYED
SYSTEMS

To download and install software updates onto the de-
ployed system, a connection from the device to the
internet is required. If the roll-out is to be controlled and
monitored, there also has to be a feedback channel
from the device to the software manufacturer to report
problems and performance data. In privacy-sensitive
environments such as manufacturing, however, constant
internet connectivity is oftentimes not desired, as it pre-
sents a security risk that is difficult to mitigate. In addi-
tion, since the development and operational environment
are often very dissimilar, monitoring and diagnostic mech-
anisms need to be considered and integrated for closing
the development cycle.

2.6 REQUIRED SPECIALIZATION

Developing cyber-physical system is a demanding task
that requires the expertise of multiple different engi-
neering disciplines, including software, mechanical and
electrical. This means that simple changes can require
collaboration of several engineers with different back-
grounds, as having a complete view of all requirements
and dependencies of the product is close to impossible
for a single engineer. Ownership for some changes might
then need to be shared, which makes it more difficult to
foster a culture of responsibility.

Collaboration can be complicated by culture differences
in the different engineering disciplines. Each field of
engineering also prioritizes different requirements when
working on a feature, which are oftentimes conflicting.

12 Challenges

2.7 UNSUITABLE BUSINESS MODELS AND
CUSTOMER RELATIONS

Continuous support of the deployed system necessitates
a rethinking of a company’s business model, as a one-
time-payment model is not suitable to cover the related
costs. IT companies have approached this issue with pay-
per-use or subscription-based models. Such a substantial
change in business model, however, clashes with the
expectations of customers in the cyber-physical systems
domain. In a business-to-business context, customers are
organized for producing and shipping goods, with all
implications: production contracts include one-time pay-
ments and approvals of the delivered goods and, as
a result, customers plan their budgets for one-time invest-
ments, not for the regular fees of continuous software
updates.

For business-to-consumer relations, the customer also
expects to receive a finished product without incurring
additional perpetual payments. The advantages of
adaptation to changing market demands and need for
continuous product improvement is often not apparent
and, thus, hard to convey.

2.8 COMPLIANCE TO SAFETY
REGULATIONS

As cyber-physical systems interact with the real world,
software errors can potentially lead to catastrophic acci-
dents where damage to the environment is unavoidable.
They, therefore, are subject to strict safety regulations
that need to be considered during development. This is
especially true for products that are deployed in an envi-
ronment containing humans, where system failures can
result in severe injury or loss of life.

In many industries, products need to be certified in order
to ensure their safety in operation. Certification bodies
oftentimes place requirements on the development pro-
cess itself, which cannot be met by the DevOps process.
For instance, in general a re-certification of complete
systems instead of changed parts is necessary, impeding
incremental updates.

13Challenges

14 The Way Forward

3.2 OPTIMIZED TESTING PIPELINE

Extensive testing with a good coverage of relevant
situations is paramount to software quality and especial-
ly crucial for safety-critical cyber-physical systems. It is,
therefore, well worth it to invest effort into improving the
value pipeline by developing better tools and methods
for testing.

3.2.1 CUSTOMIZE SIMULATION
CAPABILITIES

As physical tests in the actual environment are too
expensive and time consuming, testing cyber-physical sys-
tems in their operations environment requires simulation
of the real world. Which aspects of the world need to
be simulated with which level of detail is highly domain
specific, meaning that out-of-the-box solutions can be
unsuitable. In high-revenue domains, such as automotive,
custom simulators, have therefore been created. But also
for smaller companies it pays off to invest into develop-
ing custom solutions, because the savings generated by
reducing physical testing are considerable. Nevertheless,
a remaining challenge is identifying the relevant corner
cases and testing for resilience against unforeseeable and
unforeseen events.

3.1 PRODUCT LIFECYCLE MANAGEMENT

With adequate planning, the problem of software de-
pending on hardware can be counteracted. The hardware
platform should be designed in a way that it enables
software updates for an extended period of time. During
the lifetime of a platform version, the software team
needs to focus on developing features that are supported
by that iteration and can collect requirements for the next
version. Features that cannot be released with the current
platform design need to be postponed, aligned with the
product management. With this approach to product
lifecycle management, hardware development teams can
continue to work in slower iterations while software
teams can apply DevOps.

However, such an approach can only work if the software
is developed mostly independently of the underlying
hardware. Otherwise, an updated version of the hard-
ware platform might not be compatible with the existing
software, so parts of the code base would require a
rewrite. This necessitates hardware abstraction, which in
many subdomains of cyber-physical systems adversely
impacts software performance, for example, by making it
more difficult to guarantee real time execution or necessi-
tates maintenance and extensions of such hardware
abstraction layers. Compatibility management also needs
to be explicitly considered to ensure backwards compati-
bility when deprecating or removing outdated interfaces.

3 THE WAY FORWARD

Several challenges stand in the way of using the DevOps process for developing cyber-physical systems, which
make a complete adoption of the process in this domain unlikely. However, with some key adaptations to
both the process itself and to the way cyber-physical systems are developed, many companies in the domain
will be able to benefit from a more continuous release schedule.

15The Way Forward

3.2.2 STREAMLINE TESTING STAGES

When setting up a testing pipeline based on simulators,
it is sensible to choose a multi-staged approach. Running
all tests in a full-fledged simulator might be infeasible,
but also unnecessary: for smaller-scoped unit tests, it can
be sufficient to only simulate a subset of the environ-
ment. With increasing test scope, the time and resources
required to run a test also increase. By arranging tests in
the pipeline from low to high effort, obvious bugs can
already be detected by tests with a quick response time.
Thus, the execution of tests with a slow response time
can be avoided.

3.2.3 CONTINUOUSLY IMPROVE

An initial setup of a testing pipeline will have a lot of
potential for continuous improvement, to facilitate that
errors are caught as early as possible in the pipeline. A
failed test should not only lead to a bug fix, but also
cause engineers to consider whether it is possible to de-
tect the bug in an earlier stage the next time a similar
one occurs and then change the pipeline accordingly.

3.2.4 TEST IN PRODUCTION

Because no simulator can perfectly replicate the real
world, simulation testing alone cannot guarantee that
the cyber-physical system will perform without failure
in production. Without extensive physical testing, the
deployment of a new software version comes with the
risk of a decrease in performance. As such extensive
testing, however, is expensive, risk-mitigating deployment
strategies can be used instead as a way of testing in pro-
duction. Two exemplary strategies for this are blue-green
deployment and canary deployment.

Blue-green deployment

With this deployment strategy, the system software is not
updated by simple replacement of the old (green) version.
Instead, the new (blue) version is first installed and run
in parallel on the hardware. During this phase, the new
software version encounters and processes data from the
real operations environment and can be validated using
the previous version that still drives the system. The out-
put of the new version is discarded until it has been made
sure that it is not a regression compared to the previous
one, at which point the version switch occurs. The now
outdated version of the software need not be uninstalled
immediately, but can remain running in parallel for mo-
nitoring and, in case of an error, fallback purposes. In
cyber-physical systems, however, the outcomes of this
approach may be limited, when the output of a blue
version would significantly impact the succeeding system
behavior, e.g., in case of interactions with the environ-
ment.

16 The Way Forward

Canary deployment

Canary deployment is used in many software projects,
where users can opt-in to receive experimental, “nightly”
versions of a piece of software. These versions are less
thoroughly tested but contain the latest features and
have short release cycles. For less adventurous users there
are less frequent, stable releases of the software,
where the errors reported by the users of the nightly
versions have been fixed.

Such a deployment strategy can also be used for cyber-
physical systems, as customers have different require-
ments in terms of stability and update frequency. Op-
ting in to being a canary can also come with benefits for
the customer, such as better on-site support, which can
make the relationship mutually beneficial for both the
user and the vendor of the cyber-physical system. Similar-
ly, canary deployment can also be applied to rolling out
updates to individual systems in a fleet, one after another,
instead of deploying to all of them at once.

17The Way Forward

3.3 CLOSING THE LOOP

A crucial phase in the DevOps lifecycle is the monitoring
of the systems providing service to the customers. This
is necessary to identify issues which lead to a degradation
of the performance or reliability of the service. Identified
issues are fed back to development, where decisions and
priorities are based on the data of the system operating
at the customer. The monitoring pipeline should reflect
the service quality from the perspective of the customer,
in contradiction to classical monitoring systems, which
monitor for example the CPU usage of one host. For this,
it is necessary to define measurable performance indica-
tors that accurately capture service quality.

3.4 CONSOLIDATION OF ENGINEERING
DISCIPLINES

Adopting DevOps to develop cyber-physical systems not
only requires a unification of the development and opera-
tions domain, but also somewhat of a consolidation of
the many different engineering disciplines. All engineers
need to gain awareness of what is required of the system
they are developing and how changes in one discipline
affect the other disciplines related to the product. When
shared ownership of a change is necessary, it needs to be
clarified who is responsible for the change to ensure that
it is sufficiently tested before entering production.

A more holistic understanding can be achieved with tar-
geted education of the individual engineers. Many univer-
sity graduates today are already well equipped to develop
cyber-physical systems due to more specialized degrees,
for example, in robotics or automotive software develop-
ment. During onboarding, this foundational knowledge

needs to be extended with domain-specific details. From
the employee, this requires a willingness to learn about
and work on topics they are unfamiliar with.

3.5 CONTINUOUS SAFETY

Providing safety guarantees is not impossible in the
DevOps process. The certification process, however, needs
to be adapted, because the steps traditionally required for
safety analyses are not compatible with shorter iterations
and would become a bottleneck for the release cycle.
Fassbinder [4] describes an iterative approach to safety
certification that begins with an initial safety baseline
established by the minimum viable product. By verifying
that each incremental change does not introduce a safety
concern, it can be argued that the entire software re-
mains in a state that is safe. Moreover, semi-automated
and modular safety approaches are promising for facilita-
ting faster development cycles. Making continuous safety
part of the previously described green-to-green mentality
will facilitate that cyber-physical systems developed with
DevOps conform to safety regulations.

18 Conclusion & Outlook

4 CONCLUSION & OUTLOOK

4.1 CONCLUSION

Making the switch to DevOps has a huge potential to
revolutionize how cyber-physical systems are developed
and operated. Shortening release cycles while maintain-
ing high quality will result in feature-rich products with
a degree of complexity that has been unachievable as of
yet. This will also enable new business models, such as
retail of individual features or subscription-based models.
Consumers will experience less downtime and benefit
from products that are better suited to their needs, as
frequent software updates will more quickly address bug
reports and feature requests.

Before DevOps can unfold its full potential for the de-
velopment of cyber-physical systems, several challenges
specific to the domain need to be solved. Many of them
can be approached with the guiding principles presented
in this paper. Due to the diverse nature of the domain,
most companies will additionally encounter problems that
are unique to their sub-domain and for which they must
produce adequate solutions. The best way to introduce
DevOps in a company is described by the process itself:
small, incremental changes that continuously improve the
product, until at some point in the future the transition
is complete.

4.2 OUTLOOK

In the spirit of these challenges and opportunities,
Magazino GmbH and Fraunhofer IKS are working toge-
ther on solutions to the issues raised in this paper within
the funded project RoboDevOps. With a focus on robotic
applications, we will consider all stages of the software
lifecycle.

The first step will be developing a software architecture
that supports shift right. Testing, especially testing in sim-
ulation, is the second selected topic for which we will
come up with concrete solutions. For the deployment
stage, our main goal is to increase the frequency of re-
lease and to investigate different deployment strategies.
Finally, a comprehensive concept for monitoring the
performance of the deployed system will be developed
to close the loop to development, automating as
much as possible along the way.

In the course of our collaboration, we are planning to
publish a follow-up in-depth whitepaper to share further
knowledge on what is working best in practice. If you are
interested in the topic of DevOps for cyber-physical sys-
tems or are already putting it to use in your development
process, do not hesitate to reach out to us! We are
looking forward to sharing ideas and discussing novel
solutions in this prospective area with you!

5 ACKNOWLEDGEMENT

This work was funded by the Bavarian Ministry for Eco-
nomic Affairs, Regional Development and Energy as part
of the RoboDevOps project.

Sponsored by:

19Imprint

IMPRINT

AUTHORS

Fraunhofer IKS

Andreas Kreutz

andreas.kreutz@iks.fraunhofer.de

Dr. Gereon Weiß

gereon.weiss@iks.fraunhofer.de

Magazino GmbH

Johannes Rothe

rothe@magazino.eu

Dr. Moritz Tenorth

tenorth@magazino.eu

EDITOR

Fraunhofer Institute

for Cognitive Systems IKS

Hansastraße 32

D-80686 Munich

Phone: +49 089 547088-0

Fax: +49 089 547088-220

info@iks.fraunhofer.de

www.iks.fraunhofer.de

Miriam Friedmann

Phone: +49 89 547088-351

miriam.friedmann@iks.fraunhofer.de

REFERENCES

[1] D. G. Feitelson, E. Frachtenberg and K. L. Beck, “Development

and Deployment at Facebook,“ IEEE Internet Computing, vol. 17,

no. 4, pp. 8-17, July 2013.

[2] P. Fisher-Ogden, G. Burell and D. Marsh, “Full Cycle Developers

at Netflix - Operate What You Build,“ 17 May 2018. [Online].

Available: https://netflixtechblog.com/full-cycle-develop-

ers-at-netflix-a08c31f83249. [Accessed 19 January 2021].

[3] H. Kniberg and A. Ivarsson, “Scaling Agile @ Spotify with Tribes,

Squads, Chapters & Guilds,“ October 2012. [Online]. Available:

https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.

pdf. [Accessed 19 January 2021].

[4] P. Fassbinder, “Continuous Quality - Fulfilling Industry Regula-

tions and Quality Expectations in a World of Continuous Deliv-

ery,“ Sofware Quality Days, 2018.

IMAGE CREDITS

Cover image istock / zorazhuang

Page 4 Magazino GmbH

Page 11 Magazino GmbH

Page 13 Magazino GmbH

Page 16 Unsplash / Christina@wocintechchat.com

© Fraunhofer Institute for Cognitive Systems IKS

All rights reserved. Reproduction and translation only with the written permission of the editors.

mailto:andreas.kreutz%40iks.fraunhofer.de?subject=
mailto:gereon.weiss%40iks.fraunhofer.de?subject=
mailto:rothe%40magazino.eu%20?subject=
mailto:tenorth%40magazino.eu?subject=
mailto:info@iks.fraunhofer.de
http://www.iks.fraunhofer.de
mailto:miriam.friedmann%40iks.fraunhofer.de?subject=

20 Kapitelname

READ OUR BLOG !

For news and further topics of Fraunhofer IKS

visit our website and our blog:

www.iks.fraunhofer.de | safe-intelligence.fraunhofer.de

http://www.iks.fraunhofer.de
https://safe-intelligence.fraunhofer.de

