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Highly	intelligent,	massively	connected,	autonomous	systems	featuring	state-of-	

the-art technologies offer as many opportunities as challenges. The Internet-of- 

Things	paradigm	enters	all	areas	of	life.	However,	it	is	not	enough	to	just	provide	 

intelligence	or	autonomy	to	systems.	They	must	be	able	to	connect	to	other	systems,	

provide	services	and	end-to-end	communications,	adapt	to	changing	needs	and	 

be dependable at the same time. 

The challenge is resilience — the persistence of dependability when facing  

changes	—	and	how	it	can	be	defined	in	the	context	of	end-to-end	architectures,	 

which	consist	of	many	layers	of	components,	both	software	and	hardware,	 

which	in	turn	can	have	different	safety,	availability	and	dependability	requirements.	

We propose the term flexilience	—	the	combination	of	flexibility,	intelligence	 

and	resilience	to	describe	this	area	of	conflict.	Flexibility	thrives	to	constantly	and	 

perfectly	adapt	to	the	present	conditions,	while	intelligence	continuously	increases	 

the systems’ cognitive capabilities and resilience ensures its dependability in  

changing	conditions.	Therefore,	flexilience	is	persistent	dependability	and	optimized	

performance in cognitive systems when facing changes. In intelligent autonomous 

systems,	considering	only	worst-case	scenarios	during	the	design	phase	would	 

result	in	dramatically	limited	performance.	For	example,	potential	cloud	or	edge	 

services in such scenarios could not be used for any safety-related functions.  

The actual situation and risk should thus be taken into account. 

In	this	paper,	we	present	a	novel	approach	for	designing	and	managing	such	 

systems at runtime that allows safety aspects to be evaluated and guaranteed not 

only	during	the	design	phase	and	for	worst-case	scenarios,	but	also	at	runtime	in	

line	with	the	current	situation.	As	a	result,	we	can	move	functions,	including	those	

that	are	safety	related,	to	the	cloud	or	edge	for	improved	performance.

ABSTRACT
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In	the	future,	the	world	will	rely	on	widespread,	massively	

connected cognitive systems. Growing market and customer 

needs are pushing research towards dependable cloud-based 

cyber-physical systems. The challenge is to design them to  

simultaneously provide resilience,	intelligence and flexibility. 

Technology affects all areas of our lives. Systems are expected  

to	be	intelligent,	autonomous,	safe	and	adaptable.	However,	 

the current state of technology does not correspond to these 

needs.	By	itself,	an	autonomous,	intelligent,	mobile	system	is	

limited	due	to	storage,	energy	and	processing	constraints,	 

thus leading to user frustration and either a lack of desired  

functionalities,	or	an	insufficient	level	of	safety.	

Such systems exist in changing environments and interact with 

other systems and humans. For safety-critical functions,	 

maximizing performance is often neglected in order to gua-

rantee safety. This results in system designs with limited functio-

nality.	However,	the	growing	complexity	of	the	world	is	creating	

a need for systems that can adapt and modify their behavior to 

address new situations. Complex systems and the increasing de-

mands of the world call for adaptive and adaptable systems that 

can	change	their	configuration	—	and	thus	their	behavior	—	to	

meet new requirements or deal with a new situation. 

A	wide	range	of	industries	can	benefit	from	such	systems	or	 

rather system-of-systems,	from	health	care	to	manufacturing.	

A prominent example is the automotive industry in the design 

and manufacture of self-driving vehicles. Connected autonomous  

vehicles	can	offer	a	much	higher	level	of	optimization	and	 

demonstrate completely new opportunities. They can help  

to avoid accidents [1] and can maintain safe operation while  

increasing performance. Such systems-of-systems need to be safe 

and	reliable	to	ensure	proper	handling	of	hazardous	situations	 

and to provide uninterrupted services and an excellent user 

experience.	In	general,	an	architecture	comprises	”fundamental	

concepts or properties of a system in its environment embodied in 

its	elements,	relationships,	and	in	the	principles	of	its	design	and	

evolution”	[2].	For	systems-of-systems,	an	end-to-end  

architecture also takes into account the availability and reliability 

of the interacting systems. 

Flexible,	resilient	and	intelligent	end-to-end	architectures	are	

needed	to	utilize	various	services	that	offer	information	and	 

resources	and	degrade	gracefully	if	they	are	no	longer	available,	 

such as if the (wireless) connection fails. They should be  

dynamic	and	cover	end-to-end	communications	—	for	example,	 

from	a	mobile	endpoint,	like	an	autonomous	vehicle	or	robot,	

to	edge	infrastructures	such	as	road	cameras	or	facility	sensors,	

to cloud services. While a holistic approach is required to  

properly	address	the	multivariate	problems,	a	system-of- 

systems is typically not implemented by a single entity. We are  

proposing a development approach that systematically captures 

these relationships between subsystems and thereby makes 

the relevant properties of each subsystem explicit. This allows 

separation of subsystems and enables distributed development 

of the system-of-systems. 

This white paper is structured as follows: Chapter 2 discusses 

the challenges of dependable cloud-based cyber-physical  

systems(-of-systems). They should combine aspects of  

resilience,	intelligence	and	flexibility,	for	which	we	use	the	 

term flexilience that will be introduced in Chapter 3.  

Chapter	4	then	outlines	our	solutions	for	developing	flexilient	

end-to-end architectures.



2  DEPENDABLE CLOUD-BASED 
CYBER-PHYSICAL SYSTEMS 
(-OF-SYSTEMS)

2.1  CONNECTED AUTO NOMOUS  
VEHICLES

Connected autonomous vehicles have outstanding potential not 

only	for	personal	transportation,	but	also	for	fleets	of	autonomous	

taxis,	buses	or	trucks,	providing	cheaper	and	safer	transportation.	

While safety can never be compromised and operability of the  

system	is	important	at	all	times,	on-board	resources	such	as	 

processing	power,	sensor	quality	and	battery	capacity	are	not	

sufficient	to	enable	mobility	at	a	reasonable	cost.	Moreover,	 

customers expect autonomous vehicles to deliver driving perfor-

mance that is superior to what human drivers are capable of.

 

In	many	situations,	autonomous	vehicles	must	make	decisions	

related	to	things	like	speed,	maneuvering	and	route	selection,	 

all	of	which	would	benefit	from	additional	resources,	whether	it	 

is more information or processing power. A prominent example  

is the detection of pedestrians or other road users. Edge infrastruc-

tures such as high resolution cameras and the abundance of  

cloud processing power make it possible to create a comprehesive  

environment model that could allow faster vehicle speed with 

acceptable risk. Another potential source of information is other 

vehicles	in	the	vicinity.	Still,	much	like	the	vehicle	may	need	to	

adapt	its	sensors	to	the	current	ambient	conditions,	it	has	to	adjust	

to the availability of external resources to ensure constant safe and 

reliable	operation.	In	addition,	given	that	algorithms	are	expected	

to	evolve	quickly,	they	need	to	be	updated	on	a	regular	basis.	

A related scenario is the control and coordination of autonomous 

vehicles in semi-structured environments such as parking lots [3]. 

Automated	valet	parking	systems	will	benefit	from	connectivity	in	

order to exchange additional sensor data or information related to 

localization,	available	parking	space	and	guidance	for	the	vehicles.	

2.2  BUILDING AND  
INFRA STRUCTURE MANAGEMENT 

Another example is building management. Today’s buildings are 

equipped with various systems that allow them to reduce energy 

consumption,	heating	costs	or	the	carbon	footprint,	as	well	as	 

increase safety and security among other things. Such systems can 

be more costeffective and easier to maintain and update if  

the	functions	are	relocated	to	the	cloud,	even	potentially	including	

critical	or	safety-related	functions.	Apart	from	single	buildings,	 

smart cities [4] can also be managed with this approach. Similar  

benefits	can	be	achieved	for	infrastructures	such	as	network	or	traffic	

management systems. While such systems must remain operational 

even	if	individual	components	fail,	they	cannot	always	be	built	with	

full	redundancy	for	every	sensor	due	to	cost,	space	or	other	reasons.	

However,	some	inherent	redundancy	does	exist	through	the	 

abundance	of	sensors,	a	fact	that	also	tests	the	scalability	of	any	

planning tool. Intelligent countermeasures can exploit this environ-

ment by calculating the failed sensor readings from other inputs as 

an example. By evaluating the increased risk from using a virtual 

sensor,	the	system’s	performance	can	be	adjusted	to	still	meet	safety	

rules.	Alternatively,	the	system	could	switch	to	a	different	mode	 

of operation that does not require the missing sensor information.

This chapter presents three scenarios for dependable cloud-based  

cyber-physical systems(-of-systems) and discusses the associated challenges.

However,	to	ensure	permanent	safe	operation,	loss	of	connectivity	 

must	always	be	anticipated.	At	a	minimum,	a	reliable	system	

should be able to continue operation in a degraded mode if 

communication	with	certain	vehicles	is	not	possible.	For	example,	

it should clarify the conditions under which a vehicle can continue 

to operate based solely on its sensors.

2.3  WAREHOUSES AND  
SORTING FACILITIES 

Modern	warehouses	and	sorting	facilities	at	delivery	companies,	

online stores and other facilities are seeing an increasing  

number of automated vehicles or machines that are designed  

to	achieve	the	highest	level	of	efficiency	[5].	Mobile	robots	 

or	unmanned	forklifts	can	maximize	their	performance	 

when	coordinated	from	a	central	control	system.	Moreover,	 

the	planning	could	span	multiple	facilities	to	achieve	just-in-time	 

delivery	and	production.	Safety	of	the	individual	machines,	 

especially	when	operating	in	the	same	space	as	human	workers, 

 may not be compromised in the event of control signal  

loss	or	hardware	or	software	failure.	However,	it	is	not	always	 

possible	to	simply	stop	the	machine,	which	can	be	a	costly	 

measure. The machine could operate safely at a degraded  

performance	level	until	it	can	be	fixed	or	moved	out	of	a	critical	

area.	If	a	machine	has	to	be	shut	down	for	maintenance,	 

the remaining facility has to remain operational.

Dependable	Cloud-based	Cyber-Physical	Systems	(-of-Systems) 4

2.4 MAIN CHALLENGES 

The following summarizes the main challenges of  

dependable, autonomous, cyber-physical systems  

and system-of-systems.

—  Affordable safety and efficiency	by	dynamically	adjusting	

the system’s performance to an acceptable risk depending 

on the current situation and anticipating countermeasures 

that improve reliability.

—  Predictable real-time behavior	with	sufficiently	low- 

latency	and	jitter	for	control	stability	across	the	end-to-end	 

architecture.

—  Interoperable connectivity for coordination and  

information exchange between various (sub)systems  

created by different vendors

—  Hardened security	by	identification	and	mitigation	of	 

additional threats to the system’s safety through expansion  

of the system boundaries.

—  Seamless data uploads, updates and maintainability  

to collect training data and distribute changes without  

interfering with normal operation.
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2.4.1  AFFORDABLE SAFETY  
AND EFFICIENCY

Cyber-physical systems interact with their environments  

and	with	humans	in	some	instances.	Even	in	faulty	states,	 

exceptional environmental conditions or situations with  

unexpected	human	behavior,	these	systems	must	remain	safe.

The	meaning	of	safe	depends	on	the	specific	domain	with	

boundaries	defined	by	government	legislation	and	standards.	

For	example,	ISO3691-4	[6]	discusses	the	safety	requirements	

and	verification	of	driverless	industrial	trucks	and	automated	

guided	carts.	In	the	automotive	domain,	safe	design	to	 

counteract hardware failure is performed according to the  

functional	safety	standard	ISO26262	[7]	and	safety	design	 

to counteract performance limitation is performed according  

to	ISO/PAS	21448	[8].	This	normally	includes	the	analysis	of	 

hazardous	situations	that	the	system	might	encounter	and	 

assessing	the	resulting	risks	that	comprise	exposure,	severity	 

and controllability. Thorough documentation must demonstrate  

that validated strategies and countermeasures ensure an 

acceptable level of residual risk. This typically results in stricter 

requirements for autonomous vehicles on public roads and 

less strict rules for small mobile robots operating in structured 

environments without human intervention. A safety decompo-

sition can break the safety goals down to requirements at the 

component level. 

Safety	may	never	be	compromised	[9].	Ensuring	safety	by	

impeding reliability or availability reduces costs during develop-

ment,	but	will	be	more	expensive	in	the	field.	Utilizing	dissimilar	

redundant	components,	such	as	in	aircraft,	is	neither	cost- 

effective	nor	always	feasible.	Similarly,	running	all	safety-related	

functions	locally,	as	in	traditional	safety	systems,	would	limit	

2.4.2 PREDICTABLE REAL-TIME BEHAVIOUR 

Smooth,	controlled	motion	requires	data	and	control	signals	

to	arrive	at	the	right	time.	Moreover,	reactions	to	faults	must	

happen	before	hazards	can	surface.	This	is	expressed	with	 

the	fault	tolerant	time	interval,	which	should	be	longer	than	 

the time needed to detect the fault and switch to a safe state.  

The nature of cyber-physical systems usually necessitates  

a transition time that must be handled gracefully. Especially  

in the case of end-to-end architectures where multiple  

components	are	involved,	the	timing	must	be	predictable	 

to	ensure	reactions	before	the	defined	deadlines	—	in	other	 

words real-time behavior. This includes processing and  

transmission delays — such as by available processing power 

and	bandwidth	as	well	as	jitter	caused	by	different	cycle	 

times or scheduling mechanisms. 

While	several	methods	exist	[10]	to	solve	such	multivariate	 

problems,	moving	functions	into	the	cloud	inevitably	introduces	

the possibility that the cloud function becomes unavailable.  

The system must therefore be able to detect this situation and 

enter into intermediate local operation mode in a timely manner 

as described in Figure 1.	Once	the	cloud	is	available	again,	 

upgrading the function requires a second transition that has  

to be taken into consideration.
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the	performance.	Such	systems	will	not	fully	benefit	from	 

the	potential	and	resources	that	cloud	or	edge	services	offer,	 

which	requires	new	ways	to	optimize	the	system	without	 

violating any safety goals.

UPGRADED 
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intervals in fault handling  
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2.4.5  SEAMLESS DATA-UPLOADS,  
UPDATES AND MAINTAINABILITY 

Autonomous	systems	should	operate	continuously,	without	 

interruption.	On	the	other	hand,	regular	software	updates	are	 

essential,	to	improve	system	performance,	safety	as	well	as	

security and to provide new functionalities according to changing 

client	needs,	requirements	and	novel	technologies.	This	is	why	

updates	must	be	performed	dynamically,	without	interrupting	

operation of the system [13]. While dynamic software updates 

bring	many	opportunities,	such	as	avoiding	downtime,	they	also	

bring	numerous	risks,	such	as	unexpected	behavior	of	the	system	

during	an	update,	or	uncertainty	as	to	whether	a	system	will	

remain	safe	and	operable	after	an	update.	Furthermore,	collected	

runtime	data	must	be	uploaded	at	some	point	to	maximize	 

the	available	training	data,	which	is	necessary	for	improving	the	

results	of	machine	learned	components.	For	example,	robots	in	 

a warehouse can exchange their experience with different  

learned	algorithms	to	grasp	items.	In	data-sensitive	use	cases,	

such	as	smart	homes,	this	might	also	utilize	a	more	privacy-

friendly	federated	learning	approach.	However,	it	still	requires	a	

coordinated exchange of information that does not interfere  

with the normal operation of the system.

Dependable	Cloud-based	Cyber-Physical	Systems	(-of-Systems)

2.4.4 HARDENED SECURITY

Decisions	are	based	on	available	information	and	safety	often	relies	

on	sound	decisions	made	by	the	(autonomous)	system.	As	such,	 

if the system is vulnerable to malicious attacks [12] that provide  

false	information,	safety	can	be	compromised.	Especially	in	systems	

with	varying	system	boundaries,	there	are	two	possible	weak	spots	

that	are	interesting	for	potential	attackers.	One	is	the	communi-

cation	between	systems,	where	the	exchange	between	vehicles,	

robots and cloud services can be intercepted or manipulated.  

The second vulnerability is a potentially malicious device at  

the	other	end	of	the	connection.	Hence,	devices	that	participate	 

in end-to-end architectures must somehow establish trust or 

validate any information received. Additional challenges include 

ensuring	data	security,	privacy	and	authentication	[11].

2.4.3 INTEROPERABLE CONNECTIVITY 

In	the	context	of	cloud-based	systems,	interoperability	allows	the	

smooth management of application workloads and distribution of 

resources	to	maximize	performance,	avoid	overloads	and	easily	 

gather necessary information. Interoperability is key to connecting 

more and more systems developed by different vendors [11].  

This	compatibility	requires	standardized	interfaces	in	order	to	

dynamically	negotiate	interactions,	such	as	with	service	contracts.	

Conformance	must	be	monitored	during	runtime	and/or	certified	

beforehand	to	isolate	and	mitigate	hazards	caused	by	unintended	

behavior.	Moreover,	end-to-end	architectures	often	require	the	

integration of communication systems using different technologies. 

The increasing demand for connectivity requires communication at 

a	high	level	of	performance	and	reliability.	It	must	be	flexible	and	

efficient,	guarantee	a	high	quality-of-service,	and	support	multiple	

concurrent requests. Even when communication technology  

steadily	improves,	sending	raw	sensor	data	or	control	signals	will,	 

on	a	large	scale,	bring	any	system	to	its	limits.	However,	extensive	

pre- or post-processing of signals demands additional processing 

power	and	a	trade-off	must	be	found,	possibly	at	runtime.

6
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3.4  FLEXILIENCE

We introduce the term flexilience to refer to the quality  

of a system that comprises the aspects previously outlined in 

this	chapter:	flexibility,	resilience,	and	intelligence.	However,	 

each	aspect	has	to	strive	to	utilize	resources	differently,	 

which	makes	it	difficult	to	optimize	them	at	the	same	time.	

A	flexible	system	uses	its	available	resources	to	provide	the	 

best possible service at any time. A cognitive system uses  

its available resources to learn from experience and modify  

its algorithms to improve future decision-making. 

A resilient system uses its available resources to provide  

the most robust and dependable service possible.  

A	flexilient	system	has	to	find	a	unique	compromise	to	 

address its current challenges. 

The triangle of key qualities in Figure 2 helps to identify the 

direction	in	which	the	system	needs	to	be	tuned.	For	example,	

performance	can	be	improved	by	introducing	more	flexibility	

and	intelligence,	which	enables	the	system	to	adapt	to	the	

current	context,	learn	from	experience	and	thus	provide	the	

best	performance,	regardless	if	the	current	scenario	was	taken	

into account during the design or if all resources are available. 

If	high	safety	levels	are	necessary	and	the	system	has	critical,	

life-dependant	functions,	it	would	switch	to	a	safe	stop	state,	

always	providing	safety,	but	very	low	reliability	or	performance.	

The system might be operating only in a narrow range of  

scenarios	defined	during	design	time,	which	could	be	extended	

to increase the level of resilience and intelligence.  

While	flexibility	can	also	improve	reliability	and	performance,	

it must be employed with discretion so as not to interfere with 

knowledge regarding potential faults and to what extent the 

system	is	dependable	enough	to	tolerate	them,	unless	this	

information is also updated. The downside is that this increases 

the cost of developing and validating the system.

Flexilience	refers	to	this	area	of	conflict	and	the	challenge	 

in	finding	the	right	balance.	Our	approach	proposes	how	the	 

requirements	and	configurations	of	such	systems	can	be	 

analyzed	and	validated.	Moreover,	by	making	this	information	 

available	to	the	system	at	runtime,	it	can	become	self- 

aware and be in a position to handle unexpected situations.  

This approach is detailed in the next chapter.

3 FLEXILIENCE

3.1 FLEXIBILITY 

Flexibility refers to the ability to change or be changed easily  

in	response	to	the	situation.	When	it	comes	to	systems,	flexibility	 

is	not	about	freedom	of	choice	from	preprogrammed	actions,	

but about autonomously reshaping itself. Another way to put  

it	is	the	ability	to	reconfigure	in	pursuit	of	given	goals	and	 

constraints. Given that it is not possible to cover all potential 

scenarios	during	the	design	phase,	systems	must	be	able	to	 

self-adapt to current situations and environments. 

Flexible	systems	reduce	risks	and	maximize	opportunities.	 

Their ability to adapt enables them to resume operation  

when	failures	occur	or	if	resources	are	unavailable,	provided	

that	alternatives	exist.	At	the	same	time,	they	embrace	 

new	capabilities	and	maximize	performance	under	favorable	 

circumstances	[14].	A	flexible	system	uses	its	available	 

resources to provide the best possible service at any time.

3.3 RESILIENCE 

Resilience is the persistence of dependability when facing  

changes	[15].	It	refers	to	the	ability	to	manage	changing	 

environmental	conditions,	which	in	most	cases	are	not	favorable,	 

and to ensure safety and solid performance at all times. Resilient 

systems must also be able to gracefully handle situations when 

various failures occur and resources are unavailable. This extends 

beyond simple fault-tolerance to include handling unexpected 

situations that were not considered during the design. 

Dependability	promises	uninterrupted	service	that	conforms	to	

the	desired	level	of	quality.	By	definition,	resilience	means	that	

predicting and implementing appropriate measures and  

responses for all possible situations in advance is unrealistic.  

The system must therefore continuously adapt to the current 

3.2 INTELLIGENCE 

Intelligence refers to the ability to acquire and apply knowledge 

and	skills.	At	the	Fraunhofer	Institute	for	Cognitive	Systems	IKS,	

we view cognitive systems as technical systems capable of  

independently solving and developing strategies for human 

tasks.	To	accomplish	this,	these	systems	are	equipped	with	

cognitive	capabilities	for	context	comprehension,	interaction,	

adaptation	and	learning.	Cognitive	systems	can	utilize	artificial	

intelligence	(AI)	methods	such	as	machine	learning,	neural	 

networks	and	deep	learning,	but	rely	on	other	approaches	 

as	well.Cognitive	systems	are	characterized	by	continuous	 

adaptation to the current context with the goal of improving.  

While it is nearly impossible to design an optimal system that 

achieves	the	best	performance	in	all	situations,	such	systems	

can operate in a constantly changing environment and improve 

on their own. They can even learn to manage situations that 

were not taken into consideration during the design phase.  

A cognitive system uses its available resources to learn from 

experience and modify its algorithms to improve future decisions.

To overcome the main challenges of dependable  

cloud-based systems described in the previous section, 

we propose to design these systems with a focus on   

flexibility, intelligence and resilience. We do this by  

combining these qualities into a new term that we refer 

to as flexilience, which we view as persistent dependa-

bility and optimized performance in cognitive systems 

when facing changes.

Flexilience includes the ability of a system to  

continuously deliver the best possible service, maintain 

relevant safety levels and service reliability, and improve 

itself in unpredictable, constantly changing conditions  

by adapting to current context and learning from  

experience; in other words by being flexible, resilient 

and intelligent.

context to maintain uninterrupted operation at the required 

safety	level.	To	do	this,	it	has	to	be	aware	of	how	its	resources	

support	different	contexts	and	continuously	refine	this	knowledge.	

A resilient system uses its available resources to provide the most 

robust and dependable services possible.

Flexilience 7
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Figure 2: Key qualities  

of dependable cloud-based  

cyber-physical systems.
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The	system	goals,	especially	those	related	but	not	limited	to	 

safety,	serve	as	the	initial	input (0). While these goals are  

normally	defined	by	our	customers,	Fraunhofer	IKS	can	provide	

assistance	in	creating	them	through	methods	such	as	hazard	

and	risk	analyses	(HARA).	The	initial	input	influences	all	 

the subsequent architecture design decisions with the aim  

of	satisfying	or	maximizing	the	goals.	

In	the	next	step,	requirements for the system are derived (1)  

from the goals. Starting from top-level requirements and 

constraints	for	the	overall	system,	the	basic	components	and	

associated	task	descriptions	are	then	derived	and	analyzed	 

as requirements in text form. This analysis systematically  

identifies (2) the	failure	modes	and,	more	generally,	weaknes-

ses. It also refines (3) the requirements by suggesting counter  

measures that enable fault prevention and fault tolerance or 

otherwise	address	relevant	weaknesses.	Our	analysis	approach	

is discussed in more detail when we describe our weakness- 

driven	requirements	refinement	in	Section	4.2.	

The requirements limit (4) the	possible	configuration	space	of	

the end-to-end architecture. What we offer is to implement a 

domain-specific	system	model	that	includes	the	corresponding	

context	as	a	way	to	describe	the	specific	scenarios	under	 

analysis. This is the configuration space model – a set of 

tools	to	describe	the	degrees	of	freedom	and	their	constraints,	

collect	information,	perform	analyses	and	produce	a	formalized	

description	of	the	goals	and	requirements.	An	integral,	 

yet distinct part is a safety model,	which	makes	it	possible	 

to perform safety-oriented analyses and set limits to the  

performance-related	optimizations.	The	models	can	be	 

instantiated (5) and	narrowed	down	in	order	to	further	analyze	

selected	weaknesses,	among	other	things.	Solutions to  

these models are explored (6) in order to identify and evaluate  

(optimal)	system	configuration	candidates.	

While	the	optimal	solutions	will	be	constructed	to	fulfill	the	

specified	requirements,	it	must	be	validated (7) to make sure 

that	the	defined	goals	are	in	fact	satisfied	and	that	no	weak-

nesses	have	been	overlooked	during	requirements	refinement.	 

Our	service	offer	entails	carrying	out	detailed	analyses	and	

simulations to evaluate end-to-end architecture and application 

solutions,	which	involves	validating	the	safety	and	performance	

of	the	solutions	with	respect	to	the	defined	goals	and	also	 

providing fault forecasts or help in identifying critical scenarios. 

We can also offer to help bring the design concept to  

runtime using a monitor and recovery concept. The monitored  

properties are defined (8) by the requirements and the  

recovery plans are provided (9) by optimal solutions for the 

identified	contexts.	At	runtime,	the	monitored	properties	 

are used to determine the current state and context that  

trigger	a	recovery	plan	if	needed.	Our	offer	does	not	stop	 

at	these	artifacts,	but	can	also	include	concepts	and	prototypes	

for the required monitors and recovery mechanisms that  

constitute the system’s self-awareness. 

Currently,	knowledge	is	mainly	introduced	by	manual	 

engineering	steps	in	the	design	phase.	One	focus	of	our	 

research	is	automation	of	these	steps,	eventually	making	 

it possible to move some steps to the runtime phase  

and as a result further increasing the degree of autonomy  

in	flexilient	systems.

4.1 PROCESS OVERVIEW 

An	overview	of	the	process	for	analyzing	and	validating	 

flexilient	end-to-end	architectures	is	illustrated	in	Figure 3.  

The	various	artifacts	shown	in	the	process,	such	as	system	

requirements	or	optimal	configurations,	can	serve	as	the	input	

and output of the various actions. The process includes  

This paper has so far outlined the challenges involved with dependable cloud-based cyber-physical systems and  

presented flexilience as a desired quality. This chapter introduces our solutions for creating flexilient end-to-end  

architectures and describes how we can help our customers to develop them. While we utilize one specific  

example to illustrate the overall process, the described methods can be integrated into any existing process.

4  OUR SOLUTIONS FOR  
FLEXILIENT END-TO-END  
ARCHITECTURES

various feedback cycles that allow for iterative and continuous 

improvement	and	refinement	of	the	designed	architecture.	 

The service that we offer involves applying the methods (mainly 

for case studies or prototypes) and providing the methods that 

facilitate these actions to our customers.
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Figure 3: Process carried out to design  

and evaluate the architecture approach
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4.2  WEAKNESS-DRIVEN  
REQUIREMENTS REFINEMENT
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4.4  DEGRADATION  
AND UPGRADES 

One	of	the	crucial	features	of	resilient	systems	is	maintaining	

operability and a minimum level of service at all times and without 

interruptions.	To	achieve	this	dependability,	the	system	must	be	

able to continue operation if resources or services become unavai-

lable.	With	this	in	mind,	we	rely	on	a	degradation	and	upgrade	

concept that refers to the ability of a system to gracefully degrade 

its own functionality in such a manner that available resources and 

services	are	sufficient	[18].	As	soon	as	resources	and	services	are	

restored,	the	system	can	perform	an	upgrade	and	return	to	full	

performance. While this type of behavior needs to be managed 

dynamically	based	on	the	current	situation,	it	can	still	be	taken	into	

account and planned for during the design phase if the involved 

capabilities	are	known	[19].	While	preplanning	degradation	limits	

the	potential	degree	of	flexibility,	it	facilitates	the	integration 

	of	recovery	in	line	with	existing	safety	standards.	Furthermore,	

degradation planning always needs to be performed before it is 

needed,	otherwise	the	system	may	run	out	of	resources	before	 

it is able to adapt.

The concept can be illustrated with a simple example. Consider the 

topology	of	an	architecture	with	a	mobile	cyber-physical	system,	

such	as	an	autonomous	vehicle	or	a	driverless	industrial	truck,	 

including	cloud	services,	edge	services	and	communication	with	

other users as depicted in Figure 4. When all services and resources 

are	available,	including	the	cloud	services,	the	system	provides	full	

functionality within a global context. In case of a communication 

failure,	the	mobile	system	needs	to	gracefully	degrade	to	its	ego	

context,	where	only	information	from	its	own	sensors	is	available.	

The furthest degradation possible is to a minimum set of functions 

that	ensure	safety,	but	potentially	provide	only	limited	functionality,	

such as performing a minimum risk maneuver. This is why the  

more basic services that are required for a fallback strategy have 

to be available in the mobile system (cf. Figure 5). Through our 

experience	with	flexilient	systems,	we	can	support	our	customers	

with design patterns that facilitate shaping different performance 

levels based on available resources and ensuring safety.

The	weakness-driven	requirements	refinement	is	an	iterative	

process for uncovering the system’s weaknesses and integrating 

countermeasures	along	the	refinement.	A	weakness is any  

deviation from the system’s intended function,	such	as	a	potential	

safety	hazard	or	failure,	a	security	threat,	or	a	breach	of	 

performance thresholds. The general intent is to identify potential 

weaknesses in the system-of-systems and determine what  

conditions are necessary to handle them on subsystem level. 

The input to this phase is the top-level requirements and a draft 

of the system. 

The	main	purpose	of	this	input	is	to	guide	the	refinement	 

and	decomposition.	As	such,	they	can	be	defined	informally.	 

Along	with	the	requirements	for	each	subsystem,	potential	 

weaknesses	are	identified	using	a	HAZOP-oriented	process	[16],	 

such as by applying a set of guide-words to the requirement  

descriptions. Examples for guide words include not, more,  

less, as well as, part of, reverse, other than, early, late, before  

and after.	To	scrutinize	the	consistency	of	the	requirements,	 

the following questions are used to identify weaknesses in  

addition	to	common	HAZOP	guide-words:	

—		Internal:	How	can	the	subject	itself	fail	to	fulfill	the	 

requirement? 

—		External:	What	external	influences	can	cause	the	subject	 

to fail (the intent of) the requirement? 

—		Integrity:	Are	there	any	terms,	definitions	or	values	used	 

by the requirement that can impact the intent if chosen 

incorrectly? 

Each	of	the	identified	weaknesses	has	to	be	resolved	by	 

verification,	assumptions,	or	other	requirements.	A	verification 

describes a method to verify why a weakness will not occur  

or	is	mitigated	sufficiently.	An	assumption is a statement  

describing	a	property	that	is	assumed	to	be	valid.	Therefore,	

assumptions are formulated to document parts of the system 

that are expected to work or resolved by the individual  

subsystem.	For	example,	we	assume	a	correct	implementation	

of requirements but will not specify how this is achieved.  

Other	requirements	that	resolve	weaknesses	either	refine	 

affected	requirements	to	detail	how	the	failure	is	avoided,	 

or impose additional requirements to mitigate the cause or 

effect of certain faults. New requirements may introduce new 

weaknesses	that	are	identified	and	mitigated	in	further	 

iterations. This is continued until all weaknesses are resolved. 

The resulting requirements describe the roles of subsystems in 

the system-of-systems and their interfaces. By recording  

bidirectional	relations	between	requirements,	weaknesses	 

and	resolutions,	validation	of	an	implementation	is	facilitated	 

if the reason for a requirement can be easily traced.  

We	therefore	implemented	a	domain-specific	language	to	 

support	the	approach.	Our	service	involves	carrying	out	 

and adapting this process for our customers or helping them  

to exploit it.

4.3 PLASTIC ARCHITECTURES 

Depending	on	available	resources	and	connected	end-users,	 

the system’s architecture may need to change dynamically.  

For	example,	depending	on	the	geographic	location	of	 

the	mobile	system,	potential	faults	in	the	connection,	or	other	

issues can mean that cloud- or edge-services or other resources 

are	temporarily	unavailable.	However,	system	operability,	

performance and safety have to be maintained at satisfactory 

levels.	The	resources	should	be	utilized	whenever	they	 

become	available	again.	In	this	sense,	the	architecture	is	plastic	 

because its structure and boundaries change over time.  

Plastic architectures are an essential part of systems to ensure  

flexibility	and	interoperability. 

Architectures for resilient cognitive systems-of-systems  

can	potentially	have	three	levels:	global	(cloud	services),	 

regional (edge services) and local (embedded systems).  

Challenges arise when changing the system boundaries across 

the layers. Embedded on-board systems provide real-time  

performance.	Operational	decisions	are	made	within	the	 

timeframe	of	milliseconds	and	basic	functionalities	are	provided,	

such as monitoring and actuator controls. Edge services provide 

adaptive dependability management,	which	we	describe	in	

Section 4.6.2. Tactical decisions are made within a matter  

of seconds and minutes in accordance with the availability of 

the local servers. Cloud services provide continuous safety  

management.	Strategic	decisions,	which	are	made	over	the	

course	of	days	and	months,	are	best	rendered	in	line	with	the	

performance of the server clusters. 

Utilizing	our	experience	[17],	we	help	customers	integrate	 

these types of constantly-changing aspects into the  

requirements by considering different levels of abstractions  

that	allow	generalizing	certain	degrees	of	freedom	and	defining	

the timeframe in which reactions need to be performed.  

We can also provide patterns that for facilitating implementation 

and creating a safety case.
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4.5 UPDATES

In	today’s	world,	users	expect	software	—	especially	when	

offered as a service — to be continuously updated in order to 

improve	reliability,	safety	or	to	add	new	functions.	Depending	

on	the	scale	of	such	changes,	the	design	process	can	be	more	

similar to a completely new solution than a simple iteration. 

In	any	case,	such	updates	must	be	included	in	the	life-cycle	of	

modern cloud-based systems. 

Flexilience can provide the means to transactionally switch from 

old	to	new	code,	such	as	by	preparing	a	recovery	plan	that	will	

switch to an updated service when the system is in a state that 

permits a safe update. 

Since the involved services can be spread across different  

parts	of	the	end-to-end	architecture,	and	given	that	not	all	 

subsystems	are	able	to	update	at	once,	changes	must	be	 

coordinated across the different systems to ensure a safe  

and	sound	configuration.	We	can	help	our	customers	avoid	

these and other pitfalls when updating their own software.  

Moreover,	existing	safety	standards	may	not	include	the	means	

to consider update mechanisms. We can help our customers 

build	a	safety	case	that	can	be	used	as	a	justification	for	 

approving such mechanisms.

4.6 SELF-AWARENESS

Self-awareness is necessary when designing autonomous  

systems. These types of systems must be able to perform  

self-assessment to ensure the proper detection and handling  

of failures so that the required performance and safety is  

maintained regardless of the situation. Self-awareness can be 

defined	as	the	ability	of	the	system	to	determine	its	own	state,	

detect faults and identify possible actions and the corresponding 

results within the system itself and within its environment.  

The	first	kinds	of	systems	that	will	be	able	to	offer	true	 

self-awareness are those that have the necessary amount of 

processing	power	available	in	cloud	solutions.	Nevertheless,	

these systems also contain embedded devices with limited  

capabilities that must operate safely even if the connection 

to the cloud is not available. These systems must have some 

degree	of	basic	self-awareness	as	well.	With	this	in	mind,	 

we	recommend	a	predefined	monitor	and	recovery	approach	

that	emulates	self-awareness	for	the	given	context,	in	addition	

to	more	elaborate	adaptive	dependability	management	[20].

Figure 5: Example of application  

architecture of the system
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4.6.1  MONITORING AND RECOVERY

The most basic type of dynamic situation management involves 

defining	triggers	that	cause	specific	actions.	Monitors	are	utilized	

to	detect	when	the	system’s	current	configuration	needs	to	change	

and	start	the	identified	recovery	mechanisms.	A	common	way	to	

articulate the context an automated system is designed to operate 

in,	is	to	describe	the	operational	design	domain	(ODD).	An	ODD	 

defines	the	domain	(including	all	external	and	internal	conditions	

such	as	type	of	road,	weather,	speed,	as	well	as	status	of	the	

sensors and actuators in the case of an autonomous vehicle) over 

which	the	system	can	operate	safely.	Triggers	define	thresholds	

along	the	borders	of	this	domain,	and	designate	when	the	system	

needs to adapt and potentially degrade more advanced functionality 

to	ensure	safety.	In	addition,	a	restricted	operational	domain	(ROD)	

describes the domain in which the system can currently operate 

safely,	such	as	an	ODD	that	is	degraded	due	to	sensor	failure.	

This	concept,	however	appealing	and	promising,	can	become	 

complex and presents numerous challenges when considering  

not	only	a	single	vehicle	or	a	system,	but	several	connected	vehicles	

communicating with each other and with an infrastructure.  

Similar challenges arise for mobile robots and infrastructures such  

as	traffic	management	systems	that	operate	at	multiple	locations	 

in	coordination.	Apart	from	the	opportunities	this	concept	yields,	 

it	also	brings	with	it	various	issues,	such	as	how	to	define	a	common	

operational design domain for many participants or how to manage 

a shared model of reality. As described for the overall design  

process,	the	functionality	must	be	addressed	holistically	in	order	to	

take	into	account	the	interaction	of	the	various	influences	across	

multiple	components.	Afterwards,	weaknesses	can	be	broken	down	

and	necessary	actions	identified	for	each	individual	sub-system.	

Even	when	facing	unexpected	deviations,	subsystem	monitors	must	

keep track of the current overall system state [21]. As part of our  

services,	we	can	help	customers	identify	these	monitoring	and	

recovery approaches and provide insights into which cases such an 

approach is feasible or when dynamic management is advisable.

4.6.2  ADAPTIVE DEPENDABILITY  
MANAGEMENT

Resilience — the capability to guarantee system dependability 

at all times regardless of the situation in dynamically changing 

environments is an essential feature of the systems described in 

this	paper.	Designing	a	system	that	is	prepared	for	any	conceivable	

scenario	is	a	highly	difficult,	if	not	impossible	task	that	would	

eventually result in a very limited system featuring only a few 

basic functions that offer low performance or which switch to 

fail-stop mode when an unexpected situation is encountered. 

While a simple monitoring and recovery approach can provide 

good	performance	if	the	majority	of	contexts	and	reactions	can	

be	predicted,	more	sophisticated	methods	become	necessary	 

as	the	level	of	complexity	rises.	A	truly	flexilient	system	reacts	

and adapts to the current situation by taking into account the 

available	resources,	active	and	potential	faults,	as	well	as	the	

overall context. Such systems can achieve a high level of  

performance	under	favorable	conditions,	and	operate	safely	e 

ven when situations turn disadvantageous. 

Self-adaptation	cycles	consist	of	constant	monitoring,	 

updating	the	system’s	model	of	its	own	state	and	safety,	as	well	

as	continuous	model-based	analysis	with	system	optimization	

and adaptation. Typical loop-based control patterns are MAPE 

(monitoring,	analysis,	planning	and	execution)	and	SPA	(sense,	

plan	and	act),	which	are	typically	combined	with	knowledge	 

that we like to represent in various kinds of models. 

Fundamental for adaptive dependability management is the 

self-awareness of the system in order to correctly evaluate the 

current situation and the effects of reactions. To ensure safety 

and	enable	adaptive	safety	and	dependability	management,	 

a	safety	model	is	designed,	maintained	and	updated	at	runtime.	

This includes calculating current capability space (possible system 

configurations	derived	from	the	current	configuration	and	data	

provided	by	self-monitoring	of	the	system),	a	context	specific	

goal	space	(system	configurations	and	restrictions	required	to	

meet	the	objectives	derived	from	current	situation	in	an	external	

context),	potential	hazards	and	the	current	safety	goal.	 

The	safety	model	enables	adaptive	safety	management,	 

for	instance	by	selecting	an	optimized	system	configuration	 

from the intersection of the current goal space and current  

capability space [22]. As there is still a lot of research being 

carried	out	in	this	area,	Fraunhofer	IKS	can	conduct	targeted	re-

search	in	a	search	for	solutions	to	address	specific	scenarios	using	

state-of-the-art	techniques	or	adapt	them	to	a	specific	use	case.

5 CASE STUDIES 

Flexilience	–	a	novel	approach	to	find	a	unique	balance	between	

resilience,	intelligence,	and	flexibility	allows	numerous	challenges	

to be overcome that cloud-based dependable systems-of-systems  

must face. We propose various techniques that enable the  

development	of	flexilient	systems,	such	as	weakness-driven	requi-

rements	refinement,	plastic	architectures,	graceful	degradations	

and	upgrades,	safe	updates,	and	increasing	self-awareness	of	the	

system.	The	process	that	we	have	outlined	here	for	analyzing	and	

validating	flexilient	end-to-end	architectures	permits	companies	 

to take an iterative and continuous approach to development.  

The process details and selection of the techniques used to achieve 

flexilient	design	can	be	adapted	to	a	specific	application	scenario.	

While cloud-based approaches often promise manifold advan-

tages	over	local	solutions,	additional	information	is	usually	required	

prior to making a decision on which option is the best.  

As	part	of	our	services,	we	can	apply	this	process	to	a	case	study	

that	explores	specific	scenarios	or	contribute	findings	from	our	 

experience	with	similar	cases	in	the	past.	For	example,	 

simulating the main aspects of a function permits a comparison  

of	the	efficiency	of	different	approaches,	which	can	help	in	

evaluating	and	quantifying	the	potential	benefit	of	a	cloud-based	

function while uncovering the potential risks and weaknesses.  

The required measures and associated implementation costs can 

then be estimated using the case study as a basis.
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