Table of Contents

- Foreword 3
- About Fraunhofer ESK 4
- Automotive 6
- Industrial Communication 7
- Telecommunication 8
- Fraunhofer ESK Facts and Figures 9
- Fraunhofer Network and Alliances 10
- Working with Fraunhofer ESK 11
- Projects 12
- Laboratories 18
- Chair for Communication Systems 22
- Publications 23
- How to find us 26
- Editorial notes 27
Dear Customers, Partners and Employees,

Human communication serves as a means of exchanging information. Most of the time it works well, especially if the communication partners know each other. But misunderstandings and interruptions can still occur.

When applied to technical communication between vehicles, machines and devices, it means more information is being exchanged thanks to a growing degree of connectivity. But even in these situations, failed transmissions and data loss are commonplace.

In 2015, Fraunhofer ESK made several contributions to ensuring more reliable and efficient technical communication:

Launch of the digital test track on the A9 highway near Nuremberg

On the digital test track, vehicles share information regarding danger situations. Communication is carried out in real-time using the LTE mobile network, without the typical latency. This fast and reliable flow of information will one day help to relieve traffic congestion and prevent accidents. We implemented this project (page 12) together with Continental, Deutsche Telekom AG and Nokia Networks. I’m especially proud that the project was recognized in March 2016 with a best practice award by the Intelligent Connectivity Initiative.

E-mobility – efficiency and safety is a must

Within the SafeAdapt project (page 14), our researchers collaborated with partners from industry and science to develop an adaptive electric/electronics software architecture (E/E system) for electric vehicles. The system is designed to detect and rectify problems during operation on its own, thus leading to improved safety, reliability and cost efficiency.

From Mobility 4.0 to Industry 4.0

Manufacturing and production systems are also becoming increasingly connected. The growing numbers of networked machines, plus large volumes of data, demands a reliable communication architecture. Together with our partner Huawei, we have illustrated how this architecture could be created. The white paper „Industrial Internet of Things“ - a reference architecture for the communication (page 15) - provides an important building block for the future of industrial communication.

Broadband data transmission

VDSL and G.fast coexist, provide interference-free data transmission and even make it possible to expand broadband communication using the existing copper wire infrastructure. We demonstrated how this works in the joint project FlexDP (page 17).

You will find other interesting projects in this year’s annual report.

All of the project activities depend on human communication between the employees and with our customers, partners and financial sponsors. With this in mind, I’d like to express my sincere thanks to all of you for another year of excellent cooperation. I’m looking forward to our continued work on the communication capabilities of the future, in whatever form they might take.

Sincerely,

Rudi Knorr
Fraunhofer ESK develops distributed, heterogeneous networked systems in the business units automotive, telecommunication, energy and industrial communication.

Core expertise
The institute's broad positioning is based on extensive expertise in the areas of communication technology, application protocol and network architecture and distributed systems analysis and validation.

Business Units
In the business unit automotive, Fraunhofer ESK conducts research into communication technologies and software architectures for reliable connected driving (car-to-car, car-to-x). The institute also works on methods for the development of flexible and reliable software, particularly for networked embedded automotive systems.

In the area of energy supply, Fraunhofer ESK conducts research into future smart grid communication requirements, including analyzing which technologies are suitable for various application scenarios.

Fraunhofer ESK supports Industry 4.0-capable automation system platforms by developing robust wireless systems and application protocols that are designed for integrating cloud services.

To address the growing demand for bandwidth and improved security for telecommunications systems and architectures, Fraunhofer ESK optimizes existing technologies such as VDSL vectoring and develops new access, in-house solutions and automated test and analysis processes.

Advisory Board
The Advisory Board, which comprises experts from industry, science and the public sector, provides guidance and advice regarding the institute’s strategic alignment and helps to forge contacts with industry and other related organizations.

Members

Dr. Michael Frehse (Chairman)
Head of Section and Sub-Division Head for Information and Communications within the German Federal Ministry of the Interior

Lars Weber (Vice Chairman)
GWAdriga GmbH

Prof. Dr. Bernhard Bauer
Dean of the School of Computer Sciences at the University of Augsburg
Professor for distributed system software methodologies

Dr. Christoph Grote
Managing Director, BMW Research and Technology GmbH
BMW Group

Dr. Reiner Hoeger
Continental Automotive GmbH
Director Engineering Governance
Automotive Systems and Technology

Kai Horten
Chairman of the Management Board at ESG Elektroniksystem- und Logistik-GmbH

MR Dr. Ulrich Steger
Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology
Section VII/6
Core Expertise – Business Units – Services

Communication Technologies

<table>
<thead>
<tr>
<th>Wired Transmission Technologies</th>
<th>Wireless Networks</th>
<th>Reliable Ethernet/IP Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecommunications modeling</td>
<td>Robust, energy-efficient data transmission and localization</td>
<td>Embedded, mission-critical real-time systems</td>
</tr>
<tr>
<td>Performance and conformity testing for DSL and PLC systems</td>
<td>QoS guarantees in dynamic environments for WLAN, Car-to-x</td>
<td>QoS management, planning and validation</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Adaptive Systems</th>
<th>Dependable Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/E system communication, from the network to the middleware level</td>
<td>Analysis and test</td>
</tr>
<tr>
<td>Car-to-X communication for road safety and infotainment</td>
<td>Design and tool platforms</td>
</tr>
</tbody>
</table>

Business Units

Automotive

- E/E system communication, from the network to the middleware level
- Car-to-X communication for road safety and infotainment

Electricity Grids

- Smart metering and smart grid communication technologies

Telecommunications

- Multicore software for industrial applications
- Wireless communication in industrial environments

Automation Technologies

- Real-time communications across efficient and reliable access networks
- Process optimization for the utilization of mobile devices in business applications
Simple assistance systems, equipped with sensors such as distance monitors, have already become a standard feature in most modern vehicles. The next major technological step is fully autonomous driver assistance systems that assume control of the vehicle without driver intervention. For this to happen, the vehicle sensors must be capable of capturing data for not only the vehicle itself, but for the surrounding environment, both in a predictive manner and in real-time. The combination of internal sensors and communication between the vehicles and the road infrastructure will make it possible to develop automated cooperative assistance systems such as cooperative platooning one day.

Still, the high demands placed on such safety-critical systems bring to light basic questions related to reliability. Coping with the complexities of the internal and external communication architecture as early as the design phase requires abstracting model-driven descriptions of the functions and the non-functional features. Ensuring functional safety while the vehicle is being operated calls for fail operational communications architectures.

To enable autonomous driving functions for instance, in the future vehicles will feature high-grade, seamless and fail operational connectivity. To improve safety and increase efficiency, Fraunhofer ESK is conducting research into technologies and methods for connecting vehicles with their surroundings and developing design methods and software architectures for automotive applications in complex, adaptive and connected environments.

One of the major goals of the automotive and R&D industries over the next ten years is to relieve the strain on the transportation infrastructure. The activities are focused on two key approaches: technology-independent connectivity between traffic participants and highly-automated driving.

Point of contact
Business Unit Manager
Dr. Dirk Eilers
Phone +49 89 547088-329
dirk.eilers@esk.fraunhofer.de
Industrial Communication

The research activities of the Industrial Communication business unit are focused on the development of increasingly robust and real-time capable wireless technologies for industrial applications, as well as the development of protocol stacks for integrating sensors into the cloud.

Industrie 4.0

Industrie 4.0 is creating strong demand for flexible networking technologies in manufacturing environments, particularly for wireless connectivity and the integration of sensors and actuators into cloud platforms.

To effectively manage the coexistence of industrial wireless systems, ESK researchers developed Awair, a software program that monitors the wireless environment and rapidly detects problems with signal quality and interference. Manufacturing companies can thus improve the coexistence of their own wireless systems and facilitate interference-free operation.

A further research focus of this business unit is the incorporation of local sensors and actuators into cloud platforms. Researchers developed and integrated protocol stacks that facilitate communication between conventional PLC technology and modern cloud/IoT platforms. This business unit helps companies integrate their industrial components into IoT and cloud platforms. One example is the installation of predictive maintenance applications for the efficient maintenance and servicing of large distributed systems and equipment.

Smart Grid

Smart grids can become reality only when the network components, smart meters or electric vehicles communicate with one another using a common technology. Our researchers are working to connect smart meters and switching components to the grid provider’s infrastructure in real-time. They are also testing new transmissions technologies and protocol stacks, such as the IEC 61850, in the laboratory and in the field.

Point of contact

Business Unit Manager
Dr. Mike Heidrich
Phone +49 89 547088-377
mike.heidrich@esk.fraunhofer.de
In the Telecommunication business unit, the Access & In-house Networks and Communication Solutions groups focus their research activities on reliable broadband (gigabit) transmission via fiberglass/copper wire networks, as well as the secure transmission of information through communication solutions. In addition, expertise in the field of IT forensics in real-time systems is being developed.

The groups are working on hybrid communication infrastructures, as well as on migration paths and technologies for expediting the transformation of existing solutions.

Access & In-house Networks specializes in the development of cable modems and simulation programs for the high bit-rate (> 1 GBit/s) transmission of data in existing infrastructures near and in buildings. This group also develops technology compatibility assessments on the basis of real measurements, such as analyzing vectored VDSL versus G.fast. New fields of application for this group include know-how transformation in areas such as high bit-rate vehicle bus systems.

Communication Solutions is active in the area of cyber security, which involves authentication and trust in industrial production. In the APOLI project, a consortium of machine engineering companies, software developers, IT security firms and Fraunhofer ESK are researching and developing a simple, yet secure method of user authentication for remote maintenance applications.

Apart from validating the communication, there is a need to identify network irregularities that could be caused by cyber attacks or espionage. The group is involved in several joint projects with government organizations, industry partners and universities to develop potential analysis methods.

Point of contact
Group Manager Access & In-house Networks
Mathias Leibiger
Phone +49 89 547088-372
Finances

The Fraunhofer ESK budget totaled approximately 6.14 million in 2015 and comprised 4.5 million in personnel costs and 1.3 million in material expenses. At 1.3 million, contract research earnings generally remained unchanged from 2014 and represent 21.2 percent of the total budget.

Personnel

At the end of 2015, the Fraunhofer Institute for Embedded Systems and Communication Technologies ESK had 59 employees, of which 80 percent were active in science and technology. The scientists were supported by 35 research assistants over the course of the year. In addition, 53 interns and graduate students worked at the institute, acquiring scientific know-how and experience or completing scientific papers.

The institute currently has employees from 11 countries. 29 percent of the workforce is female.

Laboratories

Fraunhofer ESK operates four stationary labs and one mobile lab:
- Access & Inhouse Test Lab – for testing telecommunication network components, services and solutions
- NGN Test Lab – for analyzing and testing local communication solutions and cloud services
- Automotive Lab – tool platform for automotive manufacturer and supplier development projects
- Automation Lab – for measuring, testing and developing wireless systems
- Victor – modified, street-legal BMW that functions as a demonstrator for connecting driving

Publications

Fraunhofer ESK researchers published a total of 72 scientific papers*, advised 13 graduate students while working on their bachelor’s and master’s theses, and filed three patents. One researcher completed his doctorate.

Patents

As part of the Fraunhofer-Network, Fraunhofer ESK is deeply involved in the Information and Communication Technologies Alliance as well as the Microelectronics Alliance. Through collaboration between institutes with a similar technical focus, these alliances provide a platform for developing future projects and new technologies. This alliance bundles the mechanical engineering, electronics and IT expertise of its member institutes with the goal of developing solutions to address problems that affect individual as well as multiple disciplines. Fraunhofer ESK can thus rely on the other institutes to supplement its own expertise.

Fraunhofer ESK also actively participates in technology and industry committees outside of the Fraunhofer-Gesellschaft including standards groups like AUTOSAR and the Car2Car Communication Consortium and industry associations such as the German Association of Engineers and the BICCNET and Mechatronics clusters. Within the standards committees, the goal is to drive the development of standards forward and to ensure that the institute's development activities stay ahead of the technology curve. Participation in industry organizations helps Fraunhofer ESK pin-point the needs of the market and develop corresponding solutions.

www.fraunhofer.de
www.iuk.fraunhofer.de
www.mikroelektronik.fraunhofer.de
www.embedded.fraunhofer.de

Groups, Committees, Alliances

- Fraunhofer-Allianz Embedded Systems
- Fraunhofer-Verbund IuK
- Fraunhofer-Verbund Mikroelektronik
- AUTOSAR
- ARTEMIS-IA
- BICCNet
- Cluster Mechatronik
- Arbeitskreis Software-Qualität und -Fortbildung e.V. (ASQF)
- BITKOM
- Bluetooth Special Interest Group
- Broadband Forum
- CAR2CAR Communication Consortium
- Competence Center for Applied Security Technology, CAST e.V.
- CNA
- DKE/UK STD_1911.1 Netzintegration Lastmanagement und Dezentrale Energieerzeugung
- EAST-ADL Association
- Eclipse Foundation
- European Telecommunications Standards Institute (ETSI)
- Gesellschaft für Informatik e.V.
- Gesellschaft für Verkehrstelematik Bayern – ITS Bavaria
- Institute of Electrical and Electronics Engineers (IEEE)
- ITG Fachgruppe 5.2.5 Access- und Home
- ITU-T Zugang
- kit e.V.
- Münchner Kreis
- Runder Tisch: „Automatisiertes Fahren“ des Bundesministeriums für Verkehr und digitale Infrastruktur (BMVI)
- SafeTRANS
- SDL Forum Society
- Universal Plug- and Play-Forum
- Verband der Elektrotechnik (VDE)
- Verbund 4-Labs
- Verein Deutscher Ingenieure e.V. (VDI)
- VDI - Gesellschaft Fahrzeug- und Verkehrstechnik
- ZD.B - Zentrum Digitalisierung Bayern
FRAUNHOFER ESK SERVICES

PRODUCT DEVELOPMENT, TESTING AND OPTIMIZATION SUPPORT

Contract-based R&D work covering specific development steps
- Technical feasibility analyses
- Prototype implementation
- Development and test tools
- License and patent exploitation

RESEARCH INTO TECHNOLOGIES AND METHODS

Basic research within government-funded projects
- Consortium project coordination
- Innovation networks and alliances
- Technology studies and expert analyses for general research purposes and company-specific applications

COLLABORATION

One-off R&D contracts
- Framework agreements
- Large-scale projects
- Partnerships
- Innovation clusters
As part of a joint project, Fraunhofer ESK, Continental, Deutsche Telekom and Nokia Networks are demonstrating how vehicles can share highway traffic information and warnings using the Deutsche Telekom LTW mobile network. To keep transmission times to a minimum, one segment of the Deutsche Telekom network was equipped with innovative mobile edge computing technology from Nokia Networks and enhanced with a service developed by Fraunhofer ESK that is designed for the positioning-based distribution of notifications with low latency. This combination enables car-to-car signal delay times of less than 20 milliseconds, a first in the industry. Together with a vehicle electronics interface developed by Continental, various applications for safer and more comfortable driving can be realized. A prime example is the implementation of warnings for sudden braking and unexpected lane changes when overtaking.

This involved supplementing the mobile network base stations with plug-in modules, or so-called cloudlets, which ensure that the communication traffic is routed locally within the respective mobile network cell instead of traversing the entire network. This drastically reduced signal delay times to around 20 milliseconds. Without the new technology, transmission over the LTE network can take up to 100 milliseconds.

Each test vehicle features an on-board unit that is connected to the vehicle system and which communicates with the LTE network via a wireless module. Continental provided the application software and the graphical interface for the application scenarios and is also responsible for integrating the LTE technology with the vehicle bus (CAN) signals. In conjunction with Fraunhofer ESK’s GeoService software that runs on the LTE base station, the system captures status and warning notifications from the vehicles and processes them directly in the next LTE base station. Using calculations carried out locally in the base station, the system can send out nearly delay-free traffic warnings to all vehicles located in the relevant areas.

This joint project was awarded first place in the „Traffic“ category in the 2016 best practice competition conducted by the Intelligent Connectivity (German: Intelligente Vernetzung) initiative organized by the German Federal Ministry for Economic Affairs and Energy. Together with the German consulting firm Management- und IT-Beratung MHP, a Porsche company and first-time participant in the project, the project partners are planning to continue the collaboration through a follow-up project in the area of vehicle connectivity.

Fraunhofer ESK Contribution
• Development of a service for the positioning-based propagation of traffic notifications (Geo-Service) with low latency for mobile edge computing
• Provisioning of the on-board unit (OBU) with the ezCar2X® software framework
• Integration of the tablet-based user interface via Bluetooth

This is a joint project involving:
Continental, Deutsche Telekom and Nokia Networks

Point of contact
Josef Jiru
Phone +49 (0)89/54 70 88-379
josef.jiru@esk.fraunhofer.de
PEDESTRIANS, CYCLISTS, VEHICLE DRIVERS – TRAVELLING SAFELY WITH REAL-TIME MOBILE COMMUNICATION

By connecting all traffic participants, we can deal more effectively with traffic congestion, accidents and undue environmental pollution. The issue is that vehicles normally utilize the ITS-G5 wireless standard while pedestrians rely on their LTE-based smartphones. The aim is to enable traffic participants to communicate with one another in real-time, irrespective of the individual wireless technologies. In the TIMON project, Fraunhofer ESK and its partners are researching concepts that will allow this vision to become reality. The idea is to ensure that drivers, cyclists, pedestrians and the traffic infrastructure have continuous access to all relevant information from the immediate surroundings, thus allowing them to adapt to the current traffic situation. Especially pedestrians and cyclists can be for example protected from collisions by real-time warnings. The entire system will be evaluated in a simulated environment, as well as in two field tests in the Netherlands and Slovenia.

Fraunhofer ESK Contribution
- Hybrid communication system (ETSI ITS-G5 and LTE) with intelligent strategies for selecting the optimal technology
- Geomessaging service for utilizing the ETSI geonetworking protocol via mobile wireless and for vehicles, cyclists, pedestrians.

This is a joint project involving:
Universidad de Deusto (Spain), Iskra (Slovenia), CTTC (Spain), Intecs (Italy), ScraperWiki (UK), GeoX (Hungary), XLAB (Slovenia), JP LPT (Slovenia), Corte (Belgium), TASS International (Netherlands)

Funding:
The TIMON project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 636220.

Point of contact
M.Sc. Yagmur Sevilmis
Phone: +49 89 547088-393
yagmur.sevilmis@esk.fraunhofer.de

Karsten Roscher
Phone: +49 89 547088-349
karsten.roscher@esk.fraunhofer.de
SAFER AND MORE ROBUST E-VEHICLES THROUGH ADAPTIVE E/E SYSTEMS

Software architectures in E-vehicles and automated vehicles must be able to independently correct errors and disruptions while the vehicle is operating to ensure better safety, reliability and cost efficiencies. In the EU-funded SafeAdapt project, researchers developed an adaptive electric/electronic (E/E) software architecture that addresses this requirement. The six-nation project team also conducted research into the design and validation methods for this architecture to ensure that development of the system was carried out in line with the functional safety standards specified in ISO 26262. At the conclusion of the project, the results were evaluated under real conditions utilizing test vehicles and a driving simulator.

Fraunhofer ESK customers can integrate this fail-operational behavior into their products. Our researchers are ready to support you through studies, software architecture designs, software tool implementations and even the development of complete prototypes.

Fraunhofer ESK Contribution
• Overall project coordination and management
• System concept and evaluation (with partners)
• Safe adaptation platform core (with partners)
• Automatic generation of the fail operational configurations
• Fail operational AUTOSAR and tool chains

This is a joint project involving:
CEA LIST (France), Delphi (Germany), DuraCar (Netherlands), Fico Mirrors (Spain), Tecnalia Research & Innovation (Spain), Pininfarina (Italy), Siemens (Germany) and TTTech Computertechnik (Austria).

Point of contact
Group Manager
Dr. Gereon Weiss
Phone +49 89 547088-348
gereon.weiss@esk.fraunhofer.de
PREVENTION IS BETTER THAN CURE. PREDICTIVE MAINTENANCE FOR HARVESTING MACHINES

In the field, harvesting machines lack continuous, real-time access to the Internet. For this reason, reliable transmission of data to a central maintenance service is not always possible. Potential outages can nevertheless be detected before they happen by deploying a so-called edge cloud, which is an application gateway that analyzes sensor data originating from critical areas of the machine, such as the transmission. If abnormal conditions are detected, an alarm is generated. This so-called predictive maintenance approach saves time and minimizes costly machine down-time. An additional advantage is that rather than being restricted to one machine, the system can be used to monitor an entire fleet while it’s operating in the field.

Current whitepaper on the subject of the Internet of Things:

A design for a reference communication architecture design in the industrial Internet of Things

The industrial Internet of Things (IIoT) brings with it a wide range of connected devices. The task of the IIoT communication reference architecture is to manage this complexity. Fraunhofer ESK and Huawei put together a white paper that outlines what this type of reference architecture looks like.

Fraunhofer ESK Contribution
- Selection, test and implementation of the machine-to-machine (M2M) protocols and interfaces
- Support during implementation of the edge-cloud-based predictive maintenance application

This is a joint project involving:
Holmer Maschinenbau GmbH
Huawei

Point of contact
Michael Stiller
Phone +49 89 547088-346
michael.stiller@esk.fraunhofer.de

Download unter:
http://s.fhg.de/iiot
Growing numbers of volatile energy sources, such as solar and wind power systems, are being connected to the conventional power grid. Communication between the components in the existing grid and the renewable energy networks transforms the conventional electricity networks into so-called smart grids. Smart microgrids help to balance the supply and demand in the local grid segments. As part of a field test carried out in an industrial park, Fraunhofer ESK researchers defined the communication architecture for such a smart microgrid. Among other things, this involved evaluating the requirements, analyzing the data that needs to be shared between the components, as well as the interaction between the electricity and communication networks, and selecting the communications technologies. LTE was deployed for quick integration of the network components.

SMART MICROGRIDS REDUCE LOCAL ELECTRICITY NETWORK COSTS

The communications network and the electricity network form the two levels of the smart grid. A central server can be deployed to implement network support algorithms, to provide the grid operator’s control center insights into the current network situation and to offer the customer information about their own electricity usage.

Fraunhofer ESK Contribution
- Planning the smart microgrid communication system
- Implementation support during development of the smart microgrid
- Analysis of special application scenarios
- Simulation of the interaction between the electricity and communication networks
- Smart microgrid testing

This is a joint project involving:
- Axiros GmbH (Axiros)
- Bittner + Krull Softwaresysteme GmbH (B+K)
- Europäische Funk-Rundsteuerung GmbH (EFR)
- Stadtwerke Augsburg Energie GmbH (swa)
- Technical University Munich (TUM)

Funding:
This project was funded by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology.

Point of contact
Dr. Erik Oswald
Phone +49 89 547088-374
erik.oswald@esk.fraunhofer.de
FLEXDP – FLEXIBLE BROADBAND DISTRIBUTION POINTS ENHANCE COPPER WIRE

With the build-out of the fiberglass network rapidly progressing in Germany, the next milestone is referred to as fiber-to-the-distribution-point (FTTdp). This approach involves running the fiber to a distribution point at a flexible location no more than 250 meters from the customer premise. The remaining path to and inside the building or home utilizes the existing copper wire telephone infrastructure. In the FlexDP project, Fraunhofer ESK researchers used the technical components of the distribution point to create a functional prototype that was tested in the ESK Access & In-house Test Lab. The test demonstrated that VDSL2- and G.fast-based distribution points can be successfully implemented under near-real conditions.

Fraunhofer ESK Contribution
- Testing that served as a basis for developing various cable and signal noise models for copper wire infrastructures
- Examination of transmission methods such as VDSL2 vectoring and G.fast in a simulated environment
- Development of new approaches for better coexistence between VDSL2 vectoring and G.fast in a simulated environment

This is a joint project involving:
Lantiq Beteiligungs- GmbH & Co KG, an Intel Company
InnoRoute GmbH

Funding
The project was funded by the Bavarian Research Foundation.

Point of contact
Mathias Leibiger
Phone +49 89 547088-372
mathias.leibiger@esk.fraunhofer.de
Voice over IP (VoIP), which is rapidly replacing conventional telephone services, can be easily integrated into existing IT environments, although this is often done without examining the system for security vulnerabilities. With this in mind, the German Federal Ministry of Information Security (BSI) wants to increase the awareness of the security risks associated with VoIP.

Fraunhofer ESK researchers have developed a demonstrator for the BSI, which can be used to visually represent potential security vulnerabilities when using VoIP and thus identify necessary security measures. The demonstrator software, developed by project partner Alphasystems, provides a single user interface for managing the VoIP system and displaying the slides.

Security awareness – technology is only half the battle
Computers, mobile phone usage and the Internet are becoming more secure. That’s what we hear at least. Because if users are not aware of the risks of utilizing technology, even the best security measures, whether encryption or access security, are superfluous. The result is harm to equipment and systems caused by malware, unauthorized access to sensitive data and other malicious activities. For this reason, awareness campaigns are meant to make users within an organization more cognizant of the various aspects of information technology and communication security.

Fraunhofer ESK Contribution
- Demonstration flow planning
- Installation of the VoIP system and general hacker tools
- Implementation of the hacker attacks

This is a joint project involving:
Alphasystems (subcontractor)

Point of contact
Thomas Messerer
Phone +49 89 547088-336
thomas.messerer@esk.fraunhofer.de
The Automation Lab is equipped to develop, measure and test various communication systems and includes the ESK-developed Awair wireless system monitoring solution and a model factory.

Equipment

Measurement environment for analyzing the wireless spectrum, wireless propagation and protocols
- Broadband transmit and receive antenna system (up to 7 GHz)
- Spectrum analyzer
- Vector network analyzer
- Signal generator
- Logic analyzer
- Real-time wireless spectrum monitoring

Sensor network development
- Transceiver modules: CC11xx, CC24xx and CC25xx
- IEEE 802.15.4, Zigbee, ISA100, Wireless HART
- Operating systems: TinyOS, FreeRTOS and others
- Microcontrollers: EFM32, STM32 and others
- Proprietary hardware/software platform

Industrial automation
- Model factory, including production automation with distributed controls
- Cloud-based control
- TSN test bed

Software defined radio
- Hardware: USRP2 with 2.4/5 GHz and 868 MHz board
- Development: Matlab and GNURadio

Point of contact
Michael Stiller
Phone +49 89 547088-346
michael.stiller@esk.fraunhofer.de
The VICTOR demonstrator is a street-legal BMW 320i station wagon that was modified for test purposes. VICTOR is the ideal platform for the rapid prototyping and testing of reliable Car-2-X communication concepts. VICTOR can be used together with the ezCar2X® software framework developed by Fraunhofer ESK to evaluate various cooperative driver assistance communication systems with one or more technologies or to test new communication technologies and architectures. Currently equipped with multiple ITS-G5 and LTE interfaces, VICTOR will eventually be enhanced with other technologies such as ITS-G63 and LTE V2X.

Apart from the communication interfaces, VICTOR can also be retrofitted with integrated sensors. Three radar sensors and one laser scanner sensor monitor the surrounding environment while an inertial measurement unit provides centimeter-precise positioning. In order to access and merge the sensor data and use it for creating cooperative environment models, the demonstrator features two patch panels.
LABORATORIES

ACCESS & IN-HOUSE TEST LAB

The Access & In-house Test Lab is designed for analyzing communication systems in accordance with international standards and for evaluating and enhancing customer-specific solutions.

Equipment
- Measurement stations for VDSL2/ADSL2+ standards conformance tests
- Special test environment for broadband powerline communication (PLC) systems
 - Test network for broadband PLC testing in a real environment
 - Spectrum analyzer for PLC signal measurements
- Software defined radio platform for transmission experiments
- Twisted pair and power line test networks
 - Access network for vectoring tests
 - In-house network for vectoring tests and for evaluating special building scenarios
- Measurement equipment
 - Ethernet test system (Spirent test center, Spirent smartbits, IXIA Chariot)
 - PC-based data and load generators and analyzers
 - Vector signal/network/spectrum/impedance analyzers
 - Bit error rate tester
 - Diverse measurement instruments such as energy and power measurement devices and DSL/ISDN testers

NGN TEST LAB

The NGN Test Lab is set up for analyzing communication systems - from local environments to cloud services - as well as for evaluating and enhancing customer-specific solutions.

Equipment
- Various Internet connectivity (ADSL, VDSL, Gbit connectivity to the German Research Network)
- Protocol analyzers, traffic generators
- Powerline adapter test environment
- Model institute for the central private cloud Fraunhofer voice service

Services
- Usability and interoperability tests:
 - Testing of communication solution prototype implementations
 - Independent transmission system tests
 - Communication systems and applications prototype design and implementation
- Measurements:
 - User equipment testing, such as powerline adapters
 - Transmission system characteristics and behavior
- Information security:
 - Analysis of communication protocols and Internet-based services
 - IP network security and routing concepts
 - Design and prototype implementation of customer-specific security architectures

Point of contact
Mathias Leibiger
Phone +49 89 547088-372
mathias.leibiger@esk.fraunhofer.de

Point of contact
Thomas Messerer
Phone +49 89 547088-336
thomas.messerer@esk.fraunhofer.de
Fraunhofer ESK is headed by Prof. Dr. Rudi Knorr, who also holds the Chair for Communication Technology at the University Of Augsburg Department Of Computer Science. This chair is devoted to basic research in the cutting-edge field of self-organizing communication systems in conjunction with next generation networks such as cyber-physical systems or the Internet of Things.

The research activities and teaching curriculum are focused on the new demands being placed on information and communication technologies and embedded communication systems. In the future, a wide range of applications, systems, equipment, machines, vehicles and ICT networks will have to operate together in order to provide functions and services that are far beyond the capabilities of the individual components. The challenge here involves ensuring reliability, which means the ability to dynamically react in real-time to changes in the environment, the availability of the devices, services, resources and the degree of robustness in the communication system.

In this area, the research activities include not only basic technologies for reliable connectivity and data transmission, but also the interoperability and uniformity of various systems and components required for end-to-end communication, particularly with an eye on the future Internet, or the Internet of Things. In other words, a scenario in which Internet technologies pervade all technical systems, leading to the creation of a global and application-wide integration platform.

Heidrich, M.: **Verwendungsszenarien und Referenzarchitektur in der Industrie 4.0.** Vortrag auf der IT2Industry, München.

PUBLICATIONS

Heidrich, M.; Luo, J. J.: **Industrial Internet of Things: Referenzarchitektur für die Kommunikation.** Whitepaper, 2016

Hincapie Henao, D.; Maierbacher, G.: **Impact-analysis for coexisting G.fast and vectored VDSL2.** Beitrag auf der Conference on Standards for Communications and Networking (CSCN), Tokyo

Hincapie Henao, D.; Maierbacher, G.; Leibiger, M.: **Rate and reach gains of vectored DSL in the current access network.** Beitrag auf der 9. ITG-Fachkonferenz Breitbandversorgung in Deutschland, Berlin

Jiru, J.; Mammu, A. S. K.; Roscher, K.: **Adaptive decision algorithms for data aggregation in VANETs with defined channel load limits.** Beitrag auf dem Intelligent Vehicles Symposium (IV), Seoul

Krojer, F.; Furjanic, I.: **NFV and SDN machen Produktionsnetze fit für Industrie 4.0.** In: Funkschau, (2015), Nr.5, S. 40-41

Nauck, E.; Niestegge, G.; Spähn, M.: **Welche Kommunikation erfordern Smart Grid & Smart Market?**: Poster anlässlich der Fachtagung „Von Smart Grids zu Smart Markets“, Kassel

Nauck, E.; Niestegge, G.; Spähn, M.: **Welche Kommunikation erfordern Smart Grid und Smart Market?** Beitrag auf der Fachtagung „Von Smart Grids zu Smart Markets“, Kassel

Oswald, E.: Mehrstufiger Rollout hat mehr Vor- als Nachteile. In: BWK. Das Energie-Fachmagazin, (2015), Nr.4, S. 3

Rafiq, S.: A framework for systematic analysis of event traces for software debugging and optimization. Vortrag auf der Solutions for MultiCore Debug Conference (SMDC), München

Saad, A.; Staehle, B.: Towards a time-domain traffic model for adaptive industrial communication in ISM bands. Beitrag auf den Wireless Days (WD), Toulouse

Steiner, T.: Evolving traffic scenarios to test driver assistance systems in simulations. Beitrag auf dem 8. International Workshop Net4Cars, Sousse

Stiller, M.: Cloudbasierte Steuerungsdienste für die Produktion von morgen. Vortrag auf dem Clusterworkshop „Cloud Computing für die Automation“, Augsburg

Weber, L.; Heidrich, M.: Smart Metering. Success depends on selecting the right information and communication technology. Beitrag auf der SmartER Europe Conference, Essen

How to Find Us

Fraunhofer Institute for Embedded Systems and Communication Technologies ESK
Hansastraße 32
80686 Munich

By train
From Munich main station: Take the U4 or U5 subway (U-Bahn) in the direction of Laimer Platz or Westendstrasse as far as Heimeranplatz. Exit the most forward portion of the train and follow the signs to the Hansastrasse exit. Cross Hansastrasse using the pedestrian crosswalk, then immediately turn right and walk approximately 50 meters. We are located on the fourth floor of the next large building, Hansastrasse 32.

Please note, the journey from the Munich main station to Heimeranplatz requires two stripes with the MVV stripe card.

By air
From Munich airport, take the S8 or S1 suburban rail (S-Bahn) line as far as Karlsplatz Stachus station, and change to the U4 or U5 subway (U-Bahn). Travel in the direction of Laimer Platz as far as Heimeranplatz. Exit the most forward portion of the train and follow the signs to the Hansastrasse exit. Cross Hansastrasse using the pedestrian crosswalk, then immediately turn right and walk approximately 50 meters. We are located on the fourth floor of the next large building, Hansastrasse 32.

By car
If arriving in Munich on the A8 motorway, take it right through to the end and continue straight on Verdistrasse. Turn right on Meyerbeerstrasse, then left on Landsberger Strasse, and right on Elsenheimer Strasse, which eventually turns into Hansastrasse. Travel straight for approximately 500 meters. Our building is on the right hand side, Hansastrasse 32.

If arriving in Munich on any other motorway, follow the signs to the Mittlerer Ring (city circular) in the direction of the Stadtmitte (city center).

Traveling north to south: using the Mittlerer Ring, you will cross the railroad lines at Donnersbergerbrücke. Stay in the right hand lane as you enter the tunnel. At the end of the tunnel, take the first exit Westend/Heimeranplatz. Take the first right onto Tübinger Strasse, then the next right onto Dillwächterstrasse and finally the right onto Hansastrasse. Travel straight for approximately 150 meters. Our building is on the right hand side, Hansastrasse 32.

Traveling south to north: using the Mittlerer Ring, take the Westend/Heimeranplatz exit, cross the intersection and turn left onto Hansastrasse. Travel straight for approximately 100 meters. Our building is on the left hand side, Hansastrasse 32.

Parking is available in the underground garage of our building by entering from Dillwächterstrasse. Parking spaces for visitors are on the basement level (Untergeschoss) and are numbered as follows: 101-109, 164, 165, 167, 168, 169, 170 and 177-181.
Acknowledgements

We would like to express our appreciation to our customers and industry partners for their trust and willingness to disclose information about our mutual projects in this annual report. Industry projects were published with the approval of our partners.

© Fraunhofer Institute for Embedded Systems and Communication Technologies ESK Munich, 2016

All rights reserved. Reprints, reproduction and translation are subject to editorial authorization.