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Abstract

Artificial Intelligence (AI) is unlocking new capabilities in safety-critical systems, from enhanced motor control to au-
tonomous driving. However, integrating AI safely remains a significant challenge due to its data-driven nature and operation
in open and real-world variability. While established standards such as ISO 26262 and ISO 21448 provide a foundation for
functional safety and intended functionality, they do not fully address AI-specific properties like robustness, resilience, and
transparency. Emerging standards such as ISO/PAS 8800 begin to close this gap by introducing AI-specific safety lifecycles
and properties.
This white paper presents a unified safety lifecycle that integrates these standards. Using AI-Based Motor Control Unit
(AI-MC) as an illustrative use case, it shows how robustness and resilience can be systematically realized through concrete
development-time measures and operational-time measures (e.g., Out-of-Distribution). Together, these enable safe and
reliable deployment of AI-based systems on real-time high integrity platforms. The recommendations presented aim to
guide practitioners in systematically integrating AI into safety-critical systems without compromising safety, availability, or
trustworthiness.
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1 Introduction

AI is rapidly becoming a driving force for innovation across
safety-critical domains, from battery management systems
and motor control to autonomous vehicles. These systems
rely on AI’s ability to make intelligent, data-driven decisions,
unlocking unprecedented efficiency, performance, and
user experience. However, the very capabilities that
empower these systems also introduce significant chal-
lenges in ensuring that the systems are trustworthy in
all circumstances. Trustworthiness encompasses several
key dimensions: safety, security, reliability, privacy, trans-
parency, and resilience [4]. These elements are tightly
linked; for example, a lack of transparency can undermine
reliability, just as a security breach can directly compromise
safety. In safety-critical systems, where failure can result
in severe or catastrophic consequences, building AI that
is not only accurate but also demonstrably trustworthy is
essential [3, 13, 25].

In safety-critical AI, trust isn’t a feature — it’s a require-
ment

Unlike traditional rule-based systems, AI solutions that rely
on machine learning models learn their behaviour from data.
This data-driven nature makes it inherently more difficult to
predict and validate system behavior in previously unseen
scenarios, introducing unique risks in safety-critical contexts.
Addressing AI safety thus demands approaches that extend
beyond conventional safety engineering. While established
standards such as ISO 26262 (functional safety) [7] and ISO
21448 (safety of the intended functionality, SOTIF) [8] lay the
foundation for system reliability, they do not fully encom-
pass the data-driven characteristics of AI systems.

Emerging standards, notably ISO PAS 8800 [19], begin to
bridge this gap by introducing an AI-specific safety lifecycle
and outlining key safety properties, such as robustness, re-
silience, transparency, and explainability, that AI systems
should achieve for safety-critical domains.

AI Safety ̸= System Accuracy: Safety depends on how a
system handles the unknown, not just how it performs
on known data.

Among these, robustness and resilience play a central
role in safety-critical environments. Robustness ensures
that AI systems maintain acceptable performance despite
noisy inputs, environmental variability, and operational
disturbances, whereas resilience allows the AI system to
degrade gracefully. However, robustness or resilience alone
cannot ensure the overall safety of an AI system. Other
essential properties, such as transparency, alignment, and
explainability, should also be integrated into the overall
safety framework and addressed from design to deployment
and operation.

This white paper presents a road-vehicle standard-based
unified AI safety lifecycle and provides a blueprint for inte-
grating both robustness and resilience into AI systems de-
ployed in safety-critical domains. Although the discussion

spans multiple application areas, AI-MC is employed as an
illustrative use case to demonstrate how these principles can
be systematically achieved through both development-time
and operational-time measures. The paper aims to:

– Explore emerging safety standards, such as ISO PAS 8800,
and illustrate how these, alongside established standards
(ISO 26262 and ISO 21448), form a unified AI safety lifecy-
cle.

– Recommend robustness and resilience as critical pillars
within the broader AI safety framework.

– Demonstrate the practical implementation through real-
time capable AI-MC on ASIL D compliant AURIX as a use
case.

The following section provides an overview of this use case,
which will serve as a running example throughout the paper.

2 Use Case: AI-based Motor Control in
Safety-Critical Systems

Electric motor control is a fundamental function in auto-
motive applications, where precision and reliability are
paramount. The AI-MC system discussed in this report
is a control unit designed to manage electric motors
by performing closed-loop control of motor speed and
torque. It achieves this by dynamically regulating power
delivery from the vehicle’s battery based on torque or speed
commands received from the Vehicle Control Unit (VCU).

A key aspect of motor control is accurately estimating the
rotor’s position and speed to enable Field Oriented Control
(FOC). Traditionally, these measurements are provided by
physical sensors. However, to reduce cost, complexity, and
space requirements, the AI-MC system adopts a sensorless
approach. Instead of relying on dedicated hardware sensors,
it employs a Neural Network (NN) model to predict the rotor
position in real-time for higher speeds.

Technically, the system processes motor currents and
voltages to derive meaningful information about the motor’s
state. Using techniques like the Clarke transformation,
the three-phase currents and voltages (ia, va, ib, vb, ic, vc)
are converted into a two-dimensional representation
(iα, vα, iβ , vβ). This transformation captures the dynamics
of the rotating magnetic field, which is critical for FOC.
The resulting data serves as input to the NN model that
estimates the sine and cosine of the rotor’s position angle,
providing precise feedback necessary for optimal motor
control.

Figure 1 illustrates the overall architecture of the AI-MC sys-
tem, showing how the traditional control components are
integrated with the AI-based position sensor. This blend
of conventional motor control techniques with advanced
AI-driven estimation not only simplifies the system design
but also enhances performance and predictive maintenance
capabilities.

The current implementation was evaluated on a 6000 Ro-
tations per Minute (RPM) test motor to validate the core AI-
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Figure 1: Overview of overall Motor Control System (AI-MC)
including AI subsystem.

based position estimation approach in a controlled setting.
Although this does not represent full automotive-scale sys-
tems, the same methodology can be extended to higher-
performance applications with appropriate retraining and
validation.

By combining established control strategies with innovative
AI techniques, the AI-MC system offers a promising solution
for enhancing the reliability, efficiency, and safety of electric
motor control in automotive applications.

3 Towards a Unified Safety Lifecycle
for AI-Based Systems

Industry safety standards are foundational to the engineer-
ing of safety-critical systems. They provide structured pro-
cesses to manage hazards, guide verification, and demon-
strate assurance. ISO 26262 [7] defines processes for manag-
ing functional safety related to hardware faults and software
errors. However, it does not fully cover risks arising from
system functional limitations or the particular characteris-
tics of AI components. ISO 21448 [8] introduces Safety of
the Intended Functionality (Safety of the Intended Function-
ality (SOTIF)), addressing hazards from functional insuffi-
ciencies and performance limitations such as sensor errors
or environmental factors, areas outside the scope of ISO
26262 but relevant to system safety. ISO/PAS 8800 [19] com-
plements these by focusing explicitly on AI-specific safety
challenges, including robustness, resilience, transparency,
and data-related risks inherent in AI systems. Other related
standards and guidelines are also emerging to address AI
system safety-related challenges. These include ISO/IEC TR
24028:2020 [17] for trustworthiness and risk management of
AI systems, ISO/IEC 24029-1:2021 [18] for AI robustness verifi-
cation, IEEE 7001-2021 [14] for transparency in autonomous
systems, and UL 4600 [21] which specifies safety principles
for autonomous products including AI-based systems.

Although the analyzed road-vehicle safety standards differ
in scope, maturity, and methodological emphasis, they offer
complementary safety perspectives. But they remain largely

isolated, each valuable in its own domain, yet lacking a com-
mon framework that integrates them across the AI product
lifecycle. This section introduces such a unified lifecycle, us-
ing the traditional V model from ISO 26262 as its backbone,
combined with ISO 21448 and ISO PAS 8800. It tackles the
critical challenge: How to integrate these standards into a
seamless, lifecycle-spanning framework that captures the
unique risks, hazards, and safety considerations of AI, from
concept to deployment and operation.

3.1 Safety Standards for AI-based System in
Automotive Domain

ISO 26262 [7], ISO 21448 [8], and ISO PAS 8800 [19] each
address a different slice of the safety challenge. Viewed to-
gether, they form a more complete picture of what it means
to design, develop, and assure a safe AI-based automotive
system. Below is a brief description of each of the considered
safety standards.

3.1.1 ISO 26262: Road Vehicles - Functional Safety

ISO 26262 [7] is the foundational standard for ensuring func-
tional safety in automotive systems. It addresses risks aris-
ing from system malfunctions caused by both random hard-
ware faults and systematic software/hardware failures, fo-
cusing primarily on traditional software and hardware sys-
tems rather than AI or ML components. At its core, ISO 26262
introduces a structured safety lifecycle that spans hazard
identification, risk assessment, derivation of safety goals,
and the implementation of risk reduction measures tailored
to the severity of potential failures. A key part of the stan-
dard is the assignment of Automotive Safety Integrity Lev-
els (ASILs), A through D, which reflect the level of risk as-
sociated. Each ASIL dictates the rigor of required develop-
ment processes and safety mechanisms. For example, higher
ASILs demand stronger requirements for hardware fault tol-
erance, including quantitative thresholds like failure rate
limits and fault coverage metrics. For software, ISO 26262
does not mandate specific failure rate targets but instead
prescribes development and verification methods, such as
coding guidelines, static analysis, and fault injection, based
on the ASIL classification. Though not designed for AI-based
systems, ISO 26262 remains relevant in AI contexts. It gov-
erns the underlying hardware and software infrastructure
that supports AI models (e.g., inference platforms or pre-
processing components). However, the standard does not
address the unique failure modes of AI models themselves
such as failures due to inadequate data.

3.1.2 ISO 21448: Road Vehicles - Safety of the Intended
Functionality

ISO 21448 [8] focuses on ensuring that road vehicles per-
form safely even when no system malfunctions are present.
It addresses hazards that may arise from functional insuffi-
ciencies or performance limitations, particularly in advanced
driver assistance systems (ADAS) and autonomous driving
systems. A key concept introduced by SOTIF is the identi-
fication and mitigation of "triggering conditions", i.e., spe-
cific scenarios or environmental factors that could expose
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these functional insufficiencies, potentially leading to haz-
ardous situations. The standard emphasizes a scenario-
based framework to systematically identify, evaluate, and
mitigate such risks, ensuring that the system’s intended func-
tionality remains safe across its Operating Design Domain
(ODD).

3.1.3 ISO/PAS 8800: Road Vehicles - Safety and Artifi-
cial Intelligence

ISO/PAS 8800 [19] bridges critical gaps left by ISO 26262 and
SOTIF by addressing the unique safety challenges posed by
AI components in road vehicles. It introduces a conceptual
model that connects AI development artifacts, such as train-
ing data, model architecture, and evaluation results, to the
overall system safety argument. Central to this model are
safety-related properties that must be addressed in every
stage of the AI safety lifecycle, from AI design to deployment,
ensuring that any potential risks or insufficiencies during
development and operation are identified and mitigated.
Additionally, ISO PAS 8800 provides comprehensive guid-
ance on the dataset lifecycle, verification and validation of
AI systems, operational safety measures, and the develop-
ment of assurance arguments tailored to AI-based systems.

ISO PAS 8800 defines essential AI safety properties
like robustness, resilience, and more.

3.2 Unifying the Standards in a Lifecycle
This section delivers on one of the core contributions out-
lined in the introduction: proposing a unified safety lifecycle
that integrates ISO 26262, ISO 21448, and ISO PAS 8800 into
a cohesive framework for AI-based systems in safety-critical
domains.

Despite their complementary nature, there is limited guid-
ance on the integration of these standards, leaving practi-
tioners without a cohesive framework for AI system develop-
ment across the lifecycle. As a result, practitioners may face
fragmented safety processes, duplicated work artifacts, and
inconsistencies in safety practices across the lifecycle. This
fragmentation not only complicates regulatory compliance
but also increases development cost, prolongs validation
cycles, and introduces uncertainty into safety assurance.

To resolve this, we introduced a unified lifecycle model that
integrates the aforementioned standards into a cohesive pro-
cess in [26]. It uses the well-established V-model from ISO
26262 as a structural backbone while embedding AI-specific
phases such as AI system design and verification, AI compo-
nent design and verification, and learning assurance, in the
V-cycle. This combined V cycle is shown in Figure 2. On this
V-cycle for AI systems, the clauses from ISO 21448 and ISO
PAS 8800 are mapped. This integrated view provides practi-
cal clarity on where and how the standards intersect. It also
helps teams identify which lifecycle phases are governed by
which standards and where dedicated AI-focused processes
are needed.

The Key lifecycle stages in the combined V cycle include:

– Concept Phase: The lifecycle begins with the definition of
the intended functionality, hazard identification, and high-
level ODD specification. ISO 21448 complements this by
analysing hazards from functional insufficiencies or mis-
use and establishing the acceptance criteria, as opposed to
ASILs in ISO 26262. For AI system, these can include model
misclassifications or insufficient performance under rare
conditions. Preliminary ODD boundaries and assumptions
are established here but remain coarse, to be refined in
later phases.

– System Design Phase: This phase encompasses both the
functional safety concept and the technical safety concept,
as shown in ISO 26262 activities in Figure 2. First, system-
level safety goals are translated into functional safety re-
quirements defining what must be achieved to mitigate
hazards (functional safety concept). Next, the technical
safety concept specifies how these goals are realised via
architectural choices, safety mechanisms, and redundan-
cies.For AI systems, this include ISO/PAS 8800’s guidance
on AI-specific safety requirement and design considera-
tions. Similarly, ODD is refined for AI and non-AI subsys-
tems.

– AI Component Design and Implementation: Following
system design, detailed design and implementation occur
at the component level. For conventional software, this
includes low-level software design and coding based on
ISO 26262. For AI components, this includes model train-
ing, dataset specification, and model selection—activities
addressed by ISO/PAS 8800 under the umbrella of AI learn-
ing assurance. This is also the point where refined hazards,
performance limitations, and system assumptions dictate
training data selection and evaluation procedures.

– Verification and Validation: This phase combines tra-
ditional software verification with AI-specific testing and
assurance. ISO 26262 defines structural test coverage and
fault injection; ISO/PAS 8800 complements this with model
robustness testing, out-of-distribution detection, and val-
idation against the intended ODD. Here, lifecycle trace-
ability becomes essential as safety requirements and ODD
constraints must be testable and measurable.

– Operation and Maintenance: After deployment, the sys-
tem must continue to operate safely under evolving con-
ditions. ISO 21448 and ISO/PAS 8800 emphasize the im-
portance of monitoring AI performance post-deployment
and managing distribution shift. Updates to models or
system configurations must trigger reassessment of safety
assumptions. Maintaining traceability to earlier lifecycle
decisions is vital during updates and re-validation.

3.3 Lifecycle-Spanning Safety Enablers
While lifecycle phases presented in the previous section pro-
vide structure, they cannot fully capture the cross-cutting
nature of some key AI safety concepts. In this section, we
present three such safety concepts that operate across life-
cycle phases and unify the application of the standards.
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Figure 2: Reference AI-based product lifecycle for road vehicles based on ISO 26262 series and its possible interaction with
ISO 21448 and ISO PAS 8800 [26].

Figure 3: Hazardous model for AI systems.

3.3.1 Unified Hazardous Event Model

Hazard analysis remains a foundational activity in any safety
lifecycle. In the context of AI-based systems, its scope must
be broadened to account for both traditional and AI-specific
failure modes. ISO 26262 identifies hazards stemming from
systematic errors and hardware failures. These remain
highly relevant for embedded AI systems in safety-critical
domains.

ISO 21448 extends the hazard landscape to include func-
tional insufficiencies, performance and specification limi-
tations, as well as potential misuse by users. It introduces
triggering conditions that expose unsafe system behavior
not due to component failure, but due to limitations in the
design or assumptions.

For AI systems, this challenge is compounded by the fact that
such insufficiencies often lack a clear deterministic cause.
ISO PAS 8800 addresses this by refining the notion of per-
formance insufficiencies through the lens of safety-related

AI properties, such as AI robustness, AI resilience, and AI ex-
plainability. Rather than direct causation, AI errors often
emerge from the absence or insufficiency of these proper-
ties. For instance, incomplete data coverage during training
can lead to reduced robustness at runtime, ultimately re-
sulting in misclassifications or failures. As shown in Figure 3,
these insufficiencies form a causal chain: sub-optimal de-
velopment processes can compromise key AI safety-related
properties, which in turn lead to erroneous outputs. Hazards
in AI systems must be traced and mitigated across phases,
from incomplete ODD specification in the concept phase to
degraded robustness under real-world conditions during
operation.

3.3.2 Hierarchical ODD Refinement

A unified AI safety lifecycle begins with a strong system spec-
ification, anchored in explicit safety goals, operational con-
straints, and assumptions about the intended environment.
Central to this is the ODD, defined in ISO 21448 (based on
SAE J3016) as the specific set of conditions in which a system
or feature is intended to operate safely. In AI-based systems,
the ODD not only bounds system behavior but also guides
data collection, model training, and runtime monitoring.

In early concept phases, the system-level ODD serves as a
high-level constraint space, defining where the system is
intended to operate safely. As design progresses, it must
be systematically refined across the architecture: from sys-
tem to subsystems, components, and individual AI models.
Each level introduces new assumptions and constraints that
must remain consistent with the higher-level ODD definition.
This hierarchical refinement supports realistic training, eval-
uation, and deployment strategies, allowing AI models to
generalize within the ODD while gracefully handling out-of-
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Figure 4: Hierarchical refinement of the Operational Design
Domain (ODD) for AI-based Motor Control.

domain conditions.

Figure 4 illustrates this process in the AI-MC use case: system-
level torque or speed limits are refined into AI model-specific
constraints such as current and voltage sensor noise charac-
teristics for AI-based motor position prediction. Clear ODD
allocation across levels supports modular development and
reduces assumption mismatches.

Importantly, the ODD continues to evolve beyond develop-
ment. As the system is exposed to operational data, real-
world edge cases, and potential distribution shifts, its un-
derstanding of safe operational conditions must adapt. AI
systems must monitor runtime conditions to ensure they op-
erate within their validated ODD and trigger fallback strate-
gies when faced with unfamiliar or out-of-domain inputs.

The ODD is Alive — In AI systems, it’s a safety envelope
that evolves with every mile and every edge case.

3.3.3 Multi-Level Operational Monitoring

Figure 5: Hierarchical Operational monitoring.

Design-time efforts alone cannot eliminate all risks in AI sys-
tems. Residual insufficiencies, such as unforeseen inputs,
model drift, or sensor noise, can only be fully addressed dur-
ing operation. To detect, contain, and respond to such issues
before they escalate, a multi-layered operational monitor-
ing concept is required. Insufficiencies can surface at any
stage, for example, at the level of the model, in interactions
between components, or due to external factors beyond sys-
tem control. No single layer of monitoring can guarantee

safety across all contexts. A distributed monitoring strategy
increases coverage and enables faster, more targeted mitiga-
tion. The operation time monitoring can be at the following
levels:

– Component Level: AI models are monitored in real time
for anomalies in input and performance. Techniques like
Out-of-Distribution (OOD) detection, sensor plausibility
checks, or confidence estimation help catch failures close
to the source.

– System Level: Architectural redundancies (e.g., backup
controllers or rule-based logic) safeguard the system when
AI components fail. Runtime monitors compare AI outputs
against expected behaviors to trigger safe fallbacks.

– Vehicle Level: At this level, managers such as the ODD
Handler Unit and the Automated System Mode Manager
enforce operation within validated boundaries and coordi-
nate transitions to safe modes when conditions fall outside
the ODD. Additionally, field data is continuously collected
to capture edge cases and refine system behavior post-
deployment.

4 The Role of Robustness and Re-
silience in AI Systems

Ensuring robustness and resilience is critical to maintaining
safety in AI-driven applications throughout their lifecycle.
Robustness ensures that an AI system performs reliably un-
der nominal and slightly adverse conditions, such as sensor
noise or input variability. When these limits are exceeded,
resilience becomes essential. It preserves overall system
functionality through higher-level safety mechanisms like
runtime monitoring or fallback strategies [5]. Robustness
and resilience describe an AI system’s ability to handle varia-
tions in input conditions:

Figure 6: Robustness and resilience across operational do-
mains (adapted from [5]).

– Nominal Work Domain: The scenarios the AI component
is specifically designed for. These scenarios often corre-
spond to the defined ODD.

– Robustness Domain: This extends beyond the nominal
domain to include minor perturbations such as noise or
mild data distribution shifts, ensuring the system main-
tains acceptable performance.
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– Resilience Domain: When robustness limits are exceeded,
higher-level mechanisms such as runtime monitoring
(OOD detection and Uncertainty Quantification (UQ))
prevent complete system failure.

– Failure Domain: Scenarios beyond both robustness and
resilience capabilities, where system-wide failures may
occur, potentially causing hazards.

This layered understanding highlights the necessity of vali-
dating robustness during AI model development and com-
plementing it with runtime measures such as monitoring,
fallback procedures, and out-of-distribution detection. To-
gether, these ensure the AI system maintains operational
integrity in dynamic and uncertain real-world conditions.

Robustness vs. Resilience

Robustness extends the AI system’s nominal domain,
ensuring reliability in the face of minor adversities.
Resilience maintains system-level functionality when
robustness limits are exceeded.

In the following sections, we discuss the development and
operation time measures for an AI-based Motor Control to
enable robustness and resilience.

5 Development-Time Robustness
Measures for AI-based Motor Con-
trol

5.1 Functional Robustness

5.1.1 Definition

Robustness generally refers to a model’s ability to sustain
an acceptable level of performance despite semantically
insignificant yet reasonably expected variations in the in-
put [19]. For regression tasks, a more formal definition is:

"The robustness target is said to be robust to the robust-
ness modifier if relevant interventions in the modifier, as
specified by the robustness domain, do not lead to greater
changes in the target than specified by the target toler-
ance [9]."

To ground this definition in the context of our use case, we
map its components to the AI-Based Position Sensor (AI-PS)
as follows:

– Robustness Target: Output of the NN, i.e., the sine and
cosine outputs of the AI-PS or the predicted motor position
itself.

– Robustness Modifier: Inputs to the NN, i.e., outputs of
the Clarke transform (iα and iβ) and of the Inverse Park
transform (vαRef and vβRef).

– Robustness Domain: Application-specific input pertur-
bations that are considered plausible or expected under
normal operating conditions or fault scenarios.

– Target Tolerance: Acceptable deviation in the predicted
rotor position under such perturbations.

To enable formal robustness assessment, we adopt a prob-
abilistic framing based on Pearl’s do-operator [24], which
captures the notion of applying explicit interventions to the
system’s input rather than passively observing it. Let T and
M be random variables for the robustness target and the
robustness modifier, respectively. Let DM ⊆ M denote the
domain of plausible perturbations, and let αT ∈ R≥0 be
the target tolerance. Then we define robustness as:

∀m ∈ DM , P r(dT (T, T|do(M)=m) ≤ αT ) ≥ p, (1)

where dT describes a distance function on the output space
of T . This expression states that for all perturbations m in
DM ⊆ M , the probability that the output deviates from its
unperturbed value by no more than αT must be at least p.
For this analysis, we assume p = 0.95.

5.1.2 Target Tolerance

Defining the target tolerance is a crucial part of assessing
model robustness. In the AI-PS use case, it is derived by ana-
lyzing the impact of AI-based position sensor errors at the
system level of the AI-MC. Through simulations, bias and
Gaussian noise perturbations were introduced, and their ef-
fects on motor speed deviation were evaluated against pre-
defined tolerance bounds (2% speed deviation and 10 ms
persistence). The analysis showed that for loads between
0.0025 Nm and 0.004 Nm, a bias range of -10° to -5° and
Gaussian noise variance below 0.001 met the 99.5% accept-
ability threshold. Although higher position errors are often
acceptable in safety-critical systems, a conservative abso-
lute tolerance of ±3° is proposed to ensure a safety margin
for closed-loop errors and maintain stable performance.

5.1.3 Robustness Domain

Robustness is typically evaluated by introducing input al-
terations within the robustness domain to the robustness
modifier and measuring their impact on model performance.
A crucial first step in this process is identifying realistic in-
put variations to ensure a meaningful assessment. Figure 7
shows the input perturbations assessed for the AI-PS use
case.

The magnitude of the applied perturbations for bias, gain,
and Gaussian noise is derived from typical specifications
of current sensors used in similar applications (e.g., [15]),
reflecting realistic input variations. Values for series shift,
short perturbation, omission, and constant fault are as-
sumed based on plausible operational disturbances. These
ranges for the perturbation magnitudes are summarized in
Table 1.

Table 1: Robustness evaluation ranges.

Type Robustness Domain (m) Combination of Robustness Domain with Modifier

Gain [0.95, 1.05] Multiply input with m
Bias [−0.667, 0.667] Add m to input
Gaussian [0, 0.0133] Add perturbation with standard deviation m to input
Series Shift [0, 8] Shift currents/ voltages by m time steps
Short [−0.1, 0.1] Add m to input
Omission [1, 4] Set input to zero for m time steps on 1% of the dataset
Constant Fault [1, 8] Keep input fixed for m time steps on 1% of the dataset

Robustness is then assessed by applying these perturbations
to the model inputs, as described in Table 1, and monitor-
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Figure 7: Perturbations applied to the currents and voltages.

ing the error of the AI-PS predictions. The percentages of
samples within the acceptable position error bounds are vi-
sualized in Figure 8. The yellow region indicates the defined
robustness domain; however, we also include perturbations
beyond this region to analyze the model’s behavior under
OOD conditions in Section 6.2.

The results demonstrate that the AI-PS is robust against vari-
ous common perturbations, including gain variations, Gaus-
sian noise, constant faults, omissions, and short faults. For
these input perturbations, over 95% of the model’s predic-
tions fall within the acceptable error margin of 3° specified
at the system level. Series shifts were analyzed within the
context of sampling intervals that exceed what is typically
encountered in real-world systems. Bias perturbations may
impact model performance. Functional robustness can be
improved through several AI model development measures:
augmenting training data with systematic input offsets to
simulate sensor drifts, applying adversarial training with
worst-case expected bias scenarios, using ensemble models
to reduce prediction variance [23], and applying regularisa-
tion techniques [11]. Residual biases that remain despite
these efforts can then be effectively detected and managed
at the system level through runtime monitoring and fault
isolation mechanisms.

5.2 Tool Robustness
Ensuring that the safety goals of an AI-based system are up-
held in its target execution environment is explicitly empha-
sized in ISO/PAS 8800. This requirement poses a critical chal-
lenge for safety-critical AI systems, where the transforma-
tion from trained models to deployable code often involves
a complex toolchain with multiple error-inducing steps. We
extend the concept of development-time robustness by fo-
cusing on this transformation pipeline and its associated
uncertainties.

5.2.1 Error Propagation Across Deployment Steps

The process of preparing a trained neural network for de-
ployment on hardware such as Infineon’s AURIX™TC4x PPU™
can include multiple transformation steps, each of which
may introduce approximation, as illustrated in Figure 9. Core
steps may include:

– Model Importation: Floating-point (FP) models from
frameworks like TensorFlow or ONNX are converted to

an intermediate representation suitable for tooling. This
may introduce an import error, denoted by EImp, as a
result, potentially simplifying graph structures or altering
layer-level fidelity.

– Quantization: Models are converted into Fixed Point (FXP)
representations, where accuracy loss due to precision re-
duction introduces an error, representational errors in pa-
rameters and activations EQuant.

– Optimization: Advanced optimization techniques refine
the FXP model for performance and resource utilization,
such as removing drop-out layers or scaling layers where
the scale is 1. The error introduced due to this step is rep-
resented by EOpt.

– Code Generation: Converts the optimized model into de-
ployable code or binaries, typically via hardware-specific
libraries or code templates, introducing error ECode. Al-
though this step can also introduce errors due to the ap-
proximation of functions and libraries used, we don’t fur-
ther discuss this error and assume functional correctness
and no unintended behavior in this step.

To maintain robustness and guarantee functional equiva-
lence or bounded deviation from the trained model, we de-
fine an aggregate requirement:

EImp + EQuant + EOpt + ECode ≤ EReq, (2)

where EReq is the maximum allowable error for this stage
of the process. This inequality formalizes our goal: the cu-
mulative transformation error must not exceed the system’s
acceptable error margin, as derived from the safety require-
ments. For our use case of AI-MC, we set the maximum al-
lowable EReq ≤ 1 deg. Since the network outputs sine and
cosine components, this translates to a maximum tolerable
vector error of approximately 0.017. Similarly, Mean Squared
Error (MSE) can be set to 5 × 10−3.

5.2.2 Empirical Evaluation of Toolchain Robustness

To validate whether practical toolchain transformations re-
spect this bound, we conducted a full pipeline evaluation:
importation, quantization, optimization, and code-level sim-
ulation. The NN layers and blobs were quantized between
the range of 9 to 14 fractional bits. Figure 10 depicts the com-
parison of sine and cosine outputs between the original and
quantized models. The MSE was measured at 0.0000029,
which is well below our threshold. Figure 10 further con-
firms that over 95% of prediction errors lie within the range
[−0.005, 0.005], well below the derived threshold of 0.017.
These results empirically validate that the transformation
process remains within the defined safety envelope under
nominal conditions. Nonetheless, further robustness mar-
gins should be reserved for scenarios involving perturba-
tions like noise, gain shifts, or unmodeled operational con-
ditions.
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(a) Gain (b) Bias (c) Gaussian (d) Series Shift

(e) Short (f) Omission (g) Constant Fault

Figure 8: Percentage of data with a position error < 3° for all types and magnitudes of perturbations. Yellow areas mark
the defined robustness domain.

Figure 9: Cumulative error sources across the model deploy-
ment pipeline.

Figure 10: Comparison between the transformed and un-
transformed models.

6 Operation-Time Measures for AI-
based Motor Control

6.1 Runtime Monitoring

6.1.1 Definition

Runtime monitoring plays a critical role in ensuring AI system
resilience during operation. It becomes especially relevant
when the system encounters conditions beyond its nomi-
nal and robustness work domain (cf. Table 1) [22]. While
robustness is addressed during the design phase of the AI
component, runtime monitoring mechanisms provide a dy-
namic safety net to detect and respond to deviations in real
time. These mechanisms, such as OOD detection, are vital
in managing scenarios where the AI component begins to
fail, preventing broader system-level breakdowns.

This process is critical for identifying potential issues, such
as uncertainty in predictions, OOD inputs, or performance
degradation due to shifts in data patterns over time. Typi-
cally, two complementary components can be used for run-
time monitoring: OOD detection and UQ [1].

6.1.2 Types of Runtime Monitoring

Definition: Runtime Monitoring [12]

"Runtime monitoring involves continuously tracking
the behavior of the deployed AI model to ensure it
operates reliably and delivers accurate predictions."

Runtime monitoring is critical for identifying potential is-
sues, such as high uncertainty in predictions, OOD inputs,
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Figure 11: Overview of the runtime monitoring measures.

or performance degradation due to shifts in data patterns
over time. Typically, two complementary components can
be used for runtime monitoring: OOD detection and UQ [1].

– Out-Of-Distribution Detection: This focuses on identify-
ing inputs that deviate significantly from the data distri-
bution seen during training. Such inputs may originate
from environmental changes, sensor noise, or operational
shifts, and often lead to unreliable predictions.

– Uncertainty Quantification: While OOD detection iden-
tifies anomalous inputs, UQ assesses the confidence of
the model’s predictions. High uncertainty can for example
indicate OOD inputs or poorly understood regions of the
input space. Although an overview of UQ methods is pro-
vided, their implementation lies outside the scope of this
report.

6.2 Out-of-Distribution Detection

Figure 12: Development and evaluation pipeline for out-of-
distribution detectors.

AI systems deployed in real-world environments often
encounter data that differs from their training distribution.
Such Out-of-Distribution (OOD) inputs may cause unpre-
dictable or unsafe behavior if not properly identified. OOD
detection aims to flag these inputs before they impact the
system’s operation.

This section presents a condensed version of our earlier work
in [2] and considers four representative OOD detection meth-

ods, two distance-based and two density-based, which pro-
vide a numerical score for each input, compared against a
threshold to determine whether it is In-Distribution (ID) or
OOD. The methods are:

– Mahalanobis Distance: Measures how far an input devi-
ates from the multivariate mean using a full covariance
estimate [20].

– Diagonal Distance: A lightweight variant using diagonal
distance to the distance based on use-case specific corre-
lation of voltage and currents.

– Kernel Density Estimation (KDE): Estimates the data distri-
bution non-parametrically, assigning low scores to sparse
regions [6].

– Histogram-Based Outlier Scores (HBOS): Uses histograms
of input features to assign anomaly scores based on ob-
served density [10].

These methods vary not only in their principles but also in
their practical characteristics. Mahalanobis and Diagonal
Distance are simpler in their representational power but of-
fer relatively lower computational cost and memory foot-
print, making them suitable for deployment. KDE and HBOS,
while more expressive in modeling feature distributions, re-
quire substantial computational and memory resources, es-
pecially during training, where KDE must fit kernel functions
and HBOS constructs detailed histograms. Thus, the choice
of method may depend on the operational context, balanc-
ing detection performance with implementation constraints.
Detailed description of the setup can be found in [2].

All four OOD detection methods follow a common develop-
ment and evaluation pipeline, illustrated in Figure 12; they
are trained using training data (assumed to be ID data)and
tested across various perturbation types applied to test data,
where extreme values represent the OOD data. Thresholds
τ are tuned per method and perturbation to balance false
positives and detection rates. This setup allows consistent
benchmarking across methods and fault types.

The ideal desired behavior for OOD detectors is derived from
the robustness analysis of the AI-PS, as illustrated in Fig-
ure 9. For perturbations where the AI system maintains
functional robustness across all applied perturbation lev-
els; such as Constant Fault, Omission, Short Fault, and Gain
the detector should ideally avoid triggering false positives.
This is captured through the condition of min(OOD) at both
nominal levels (e.g., P = 0) and the highest perturbation
level Pmax. For the higher perturbations level, we usually
allow a small increase (typically up to 10%) in OOD detec-
tion rates. Here, P represents the applied perturbation level
and OOD indicates the percentage of samples flagged as
out-of-distribution.

Conversely, for perturbations such as Gain, Gaussian, or
Load, where the AI system’s performance degrades with in-
creasing perturbation, the detector is expected to raise OOD
flags more frequently. In these cases, the desired behavior
includes low detection rates near the nominal condition (e.g.,
min(OOD) at P = 1 for Gain), and a rise toward max(OOD)
as P → Pmax, reflecting the growing divergence from the
training distribution.
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Certain perturbations, such as Bias or Series-Shift, may lead
to performance degradation even within the boundaries of
the designated robustness domain. Ideally, in such situa-
tions, the functional robustness of the AI-PS should be im-
proved to tolerate these perturbations by measures such as
extending training data for within the robustness domain.
For the purpose of current analysis, the detector should be-
gin flagging OOD samples at those perturbation levels within
the robustness domain where safety requirement is being
violated.

Table 2 summarizes the performance of each method against
these expectations. The Omission, Constant Fault, and Short
Fault perturbations are not detected by all the evaluated
OOD detectors, and it is considered that the neural network
is robust against these perturbations. This is because only a
small percentage of the test dataset (approximately 1%) is
perturbed, resulting in minimal changes to the distribution
of distances or densities, making it challenging to separate
ID and OOD samples effectively. However, since the AI-PS
component is maintains performance under these perturba-
tions, this limitation is acceptable.

For Gain, Gaussian, and Load perturbations, the Diagonal
method performs best, but none of the detectors fully meet
the desired performance criteria. Mahalanobis is the most
effective for Series Shift, though it still falls short of require-
ments. For Bias perturbations, HBOS demonstrates the best
performance, but still exhibits inadequate performance.

Overall, these results indicate that no single OOD detection
method alone can detect all perturbation types. While some
detectors show relatively better performance for specific per-
turbations (e.g., Diagonal Distance for Gain, Mahalanobis for
Series-Shift, HBOS for Bias and Gaussian), their suitability
needs to be evaluated on a case-to-case basis. For pertur-
bations where the AI system is inherently robust (Omission,
Constant Fault, Short Fault), all OOD detectors performance
is acceptable.

Therefore, for system owners aiming to ensure operational
safety, these results indicate that OOD detection alone may
not be sufficient. A robust safety strategy should combine
OOD detection with complementary system-level monitor-
ing measures, tailored to the nature and criticality of each
perturbation. For instance, perturbations such as Gain, Bias,
and Series-Shift could also be addressed through system-
level sanity checks. Ultimately, the selection of detection
and mitigation strategies should be systematically driven by
the specific perturbation type, its impact on system perfor-
mance, and the overall safety requirements.

7 Lesson Learned and Recommenda-
tions

This section presents practical insights into integrating
AI-based components into established engineering pro-
cesses, while maintaining the level of rigor expected in
safety-relevant domains.

– Define the ODD in a semi-formal, structured way. The
ODD is the foundation of any data-driven safety concept,

defining where the system can safely operate, what data
to collect, and expected behavior. A vague ODD (“urban
driving”) may be readable but not actionable; fully formal
models are often impractical. Instead, a structured, semi-
formal ODD, which is machine-readable and organized
by parameters or categories, enables refinement across
system levels, traceability to training data, and a consistent
safety argument from design through implementation.

– Extend proven system architectures for AI components.
In established applications with validated system designs,
AI components can be added as modular enhancements
without a full redesign. Integration must align with de-
velopment lifecycles like the V-model and comply with
standards such as ISO 26262, ISO 21448, and ISO/PAS 8800,
including implementing safety mechanisms for the AI com-
ponents to maintain overall system safety and reliability.

– Define new roles and responsibilities. AI-based systems
require roles beyond traditional development and V&V.
Roles such as data owner, data steward, ML developer,
model integrator, and AI V&V engineer must be clearly de-
fined, with explicit working instructions and integration
into existing processes. This ensure that data sets and
models are managed with the same level of traceability,
accountability, and safety assurance as conventional soft-
ware components.

– AI components as Safety Element out of Context
(SEooC) SEooC principles can be applied to modules
that rely on data-driven approaches. To do so effectively,
suppliers must explicitly state assumptions such as
input distributions, ODD boundaries, and performance
expectations. These assumptions must be thoroughly
validated during integration and continuously monitored
at runtime, with interfaces provided by supplier to detect
violations or degradations at runtime.

– Aim for grey-box understanding, not black-box trust.
Even when internal model logic is complex, partial insight
into its behavior can often be achieved. Tools for explain-
ability, testing under constraints, and monitoring can sup-
port system-level safety reasoning without requiring full
interpretability.

– Design for real-time operation including hardware fit.
For tasks involving control or timely decision-making, real-
time processing is critical. Suitable hardware platforms,
such as Infineon AURIX™ with ASIL-D certification [16], en-
able high-integrity execution of AI-based components. AI
model architecture should be chosen in alignment with
these platform constraints to ensure reliable operation.

8 Conclusion

Achieving trustworthy embedded AI requires a harmonized
approach ensuring safety is upheld throughout all phases
of the product lifecycle, from development to operation. In
this whitepaper, we present a unified lifecycle which harmo-
nizes guidance from ISO 26262 [7], ISO PAS 21448 [8], and
ISO PAS 8800 [19]. In particular, we highlight three activities
which benefit from harmonization: the hazard and risk anal-

13
10/2025



Table 2: Summary of the suitability of OOD methods for different perturbation types. Olive indicates that the desired
behavior is fully met, meaning the method performs as expected for the given perturbation; Orange signifies that the
method is the best among the compared methods, but it does not fully satisfy the requirements; Red indicates that the
desired behavior is not met, meaning the method fails to adequately detect OOD samples as required by the perturbation.

Perturbation
Method Desired Behaviour Mahalanobis

Distance Diagonal Distance KDE-based HBOS

Bias min(OOD) at P = 0
AND
max(OOD) at P = Pmax

∼ 3% at P = 0
∼ 20% at P = Pmax

∼ 0% at P = 0
∼ 5% at P = Pmax

∼ 3% at P = 0
∼ 50% at P = Pmax

∼ 3% at P = 0
∼ 65% at P = Pmax

Constant Fault,
Omission, Short

min(OOD) at P = 0
AND
min(OOD) at P = Pmax

∼ 3% at P = 0
∼ 3% at P = Pmax

∼ 0% at P = 0
∼ 0% at P = Pmax

∼ 0% at P = 0
∼ 0% at P = Pmax

∼ 1% at P = 0
∼ 1% at P = Pmax

Gain min(OOD) at P = 1
AND
min(OOD) at P = Pmax

∼ 3% at P = 1
∼ 60% at P = Pmax

∼ 2% at P = 1
∼ 18% at P = Pmax

∼ 3% at P = 1
∼ 78% at P = Pmax

∼ 1% at P = 1
∼ 83% at P = Pmax

Gaussian min(OOD) at P = 0
AND
max(OOD) at P = Pmax

∼ 0% at P = 0
∼ 90% at P = Pmax

∼ 0% at P = 0
∼ 42% at P = Pmax

∼ 1% at P = 0
∼ 95% at P = Pmax

∼ 0% at P = 0
∼ 100% at P = Pmax

Series-Shift min(OOD) at P = 0
AND
max(OOD) at P = Pmax

∼ 3% at P = 0
∼ 78% at P = Pmax

∼ 0% at P = 0
∼ 5% at P = Pmax

∼ 0% at P = 0
∼ 75% at P = Pmax

∼ 1% at P = 0
∼ 65% at P = Pmax

Load min(OOD) for P ≤ 0.005
AND
max(OOD) at P > 0.01

< 45% for P ≤ 0.005
∼ 100% at P > 0.01

< 35% for P ≤ 0.005
∼ 100% at P > 0.03

< 75% for P ≤ 0.005
100% at P > 0.01

< 90% for P ≤ 0.005
∼ 100% at P > 0.01

ysis, the refinement of the ODD throughout the lifecycle, and
the definition of operational monitoring at various levels of
hierarchy (i.e. system, sub-system, and component levels).
We make a particular focus on the role of robustness and
resilience in AI systems and discuss how these properties
might look in the context of an AI-MC use case. In doing
so, we highlight runtime measures for robustness like OOD
detection and uncertainty quantification, providing a quan-
titative analysis of the former. Through our work, we aim
for narrowing the gap between groundbreaking AI capabil-
ity and the uncompromising safety expectations of critical
embedded systems.
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