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Enhancing the reliable perception of  

autonomous systems

In our modern life, automated systems are already 

omnipresent. The latest advances in machine learning 

(ML) help with increasing automation and the fast-paced 

progression towards autonomous systems. However, as 

such methods are not inherently trustworthy and are 

being introduced into safety-critical systems, additional 

means are needed. In autonomous driving, for example, 

we can derive the main challenges when introducing ML 

in the form of deep neural networks (DNNs) for vehicle 

perception.

DNNs are overconfident in their predictions and assume 

high confidence scores in the wrong situations. To 

counteract this, we have introduced several techniques 

to estimate the uncertainty of the results of DNNs. In 

addition, we present what are known as out-of-distribu-

tion detection methods that identify unknown concepts 

that have not been learned beforehand,thus helping to 

avoid making wrong decisions.  

For the task of reliably detecting objects in 2D and 3D, 

we will outline further methods. To apply ML in the 

perception pipeline of autonomous systems, we propose 

using the supplementary information from these me-

thods for more reliable decision-making. Our evaluations 

with respect to safety-related metrics show the potential 

of this approach. Moreover, we have applied these 

enhanced ML methods and newly developed ones to the 

autonomous driving use case. In variable environmental 

conditions, such as road scenarios, light, or weather, we 

have been able to enhance the reliability of perception in 

automated driving systems. 

Our ongoing and future research is on further evaluating 

and improving the trustworthiness of ML methods to use 

them safely and to a high level of performance in various 

types of autonomous systems, ranging from vehicles to 

autonomous mobile robots, to medical devices.
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1 
Introduction  
 
Advances in machine learning and high-performance computing during the last 10 
years have led to a huge increase in available methods for improving perception in 
autonomous systems. These new approaches outperform many conventional, previ-
ously used methods on many specific tasks, such as 2D/3D object detection ([78], [60], 
[80], [101]), 3D depth estimation, image recognition ([45]), and semantic segmentation 
([2]) by a large margin. Deep neural networks have turned out to be one of the biggest 
contributors to this new wave of innovation due to their ability to solve highly complex 
problems with a high degree of accuracy and are part of every software stack for 
autonomous driving vehicles today. However, with great power comes great responsibi-
lity and a desire to better interpret and quantify the results given by these networks. It 
has been shown multiple times ([27], [20]) that deep learning models often lack in 
giving robust and calibrated predictions, making it hard to assess the uncertainties of 
the outputs. Another important aspect for providing robustness is to monitor and 
reason about the predictions at test time as well as analyze if new input is far removed 
from the samples in the training distribution. Calibrated confidence estimates in 
conjunction with out-of-distribution awareness integrated in safety-critical applications 
like autonomous driving can provide valuable additional information with respect to 
situational awareness and can reduce the risk of hazards resulting from functional 
insufficiencies by decreasing the space of unknown unsafe scenarios, which is a critical 
part of the safety of the intended functionality (SOTIF ISO/PAS 21448).

In this technical white paper, new methods for quantifying uncertainty in deep neural 
networks related to perception tasks as well as monitoring system and out-of-distribu-
tion approaches will be reviewed, developed and evaluated. Insights and context with 
respect to different perception tasks, such as object detection, will also be provided and 
linked to the approaches for estimating uncertainty. The main focus will be on safety-
critical applications where these methods provide crucial knowledge to systems for 
avoiding high-risk behavior and increasing overall safety.

1.1 
The Perception Problem

Accurate perception of the surroundings is a key part of many autonomous systems 
where an agent is required to interact with the environment. Some applications are in a 
controlled setting where several parameters of the perceived world can be adjusted to 
meet the requirements for the system to work appropriately.

Introduction

Fig. 1: 

Challenges of automotive sensors in weather conditions (left, [103]) and examples of perception 

challenges (right, [104])
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However, even though these applications can also benefit from more robust predictions 
with uncertainty quantification, the major target cases for these methods are open-
world environments. For these applications, an enormous number of configurations of 
input data is possible and likely to occur when the system is in its active state. As the 
inputs for perception modules mostly consist of very high-dimensional sensor data, 
such as lidar point clouds or (stereo) camera images, and the applied deep learning 
models also have a large amount of trainable parameters, formal verification that 
guarantees correct predictions is almost impossible, even for constrained subproblems, 
due to the huge state space for both inputs and parameters.

2 
Problems and Solutions

There are many aspects to consider in order to make machine learning-based systems 
safe. This section provides an outline and brief summary of the challenges and topics to 
consider in designing safe systems using ML components.

2.1 
Choice of Dataset 

The training and test datasets need to be representative for the chosen area of deploy-
ment. This requires a thorough understanding of the target domain. It is important to 
define under which conditions the ML system should operate, e.g., what are the 
expected objects in the scene or what are the weather conditions. The main challenge 
here is how to measure and quantify suitable datasets. Metrics include coverage, 
relevance, equivalence of cases/situations, and coverage of positive and negative 
examples. Following standard best practices, it is important to train the model indepen-
dent of the test dataset, e.g., no hyperparameter tuning should be done on test data. 
Another difficulty is how to ensure that the training data covers the semantics of the 
data the model will see during deployment. To mitigate the negative effect of distributi-
onal shift, the training dataset can be continuously improved by gathering 
data even after deployment.

How can we capture every relevant critical case required for the expected functionality 
of the model and how can this be assured? One straightforward approach to this is to 
acquire large amounts of verification data. This can be done by:

  Augmenting data, e.g., using synthetic data (especially for rare corner cases). 
  Analyzing data and finding missing examples, e.g., by searching in a latent space 

learned by autoencoders.
  An iterative development process – starting in simulation, testing in field studies, etc.

    – and assessing weaknesses during this process.

Another important aspect is how to verify the quality and correctness of annotations. 
To consider are:

  The type of annotation: How coarse, e.g., dynamic vs. static objects, hierarchy and/
or attributes of objects

 The annotator qualification (especially in the medical domain)
 The dependence of DNNs on labeling quality

Problems and Solutions

http://www.iks.fraunhofer.de?wmc=wpada21


8 | 34 Fraunhofer IKS  Machine Learning Methods www.iks.fraunhofer.de

2.2 
Unexpected Behavior of ML Methods

It is currently not possible to verify deep neural networks and make sure that their 
behavior is as expected. It is difficult to prove that the network actually learns the 
semantics of the problem and has a real understanding of the system it should model. 
Additionally, it is important that a model is robust, i.e., small perturbations in the input 
should not change the predictions drastically. Another important step towards safer 
systems is that a network should know when it cannot make reliable predictions. This is 
related to OOD detection, where the system can, e.g., ask for human help when an 
input is encountered that is different from the learned concepts. The following list 
shows concepts that help make ML models more robust and safe. See [94] for a 
complete list of safety concerns.

Uncertainty quantification learns reliable calibrated uncertainties for each input to 
determine how sure the model is that its prediction is correct.

Robustness against adversarial attacks changes the learning process of a model 
such that small – for humans often unrecognizable – changes in the input do not 
change the prediction. Such adversarial attacks can easily fool an ML system and 
deployed systems can be easily exploited, potentially resulting in catastrophic failures.

Continuous improvement by gathering data even after deployment. A straightfor-
ward approach here is to use semi-supervised learning, where a small amount of 
labeled data and large amounts of unlabeled data are used for training.

Redundancy and ensembles, with redundancy being applied at many stages of an 
ML pipeline, e.g., using redundant sensors or different neural network architectures. An 
often-used approach to improve the performance of an ML model is to train multiple 
models independently with different initializations.

Out-of-distribution detection is a mechanism to detect novel inputs that have 
different semantics than those contained in the training dataset. Detecting these is 
crucial, since standard neural networks often misclassify OOD samples with high 
confidence. We provide an overview of current OOD methods in Section 4.

3 
Uncertainty Estimation

Knowing when a neural network is uncertain is crucial in safety-critical applications. 
There are two main types of uncertainties that can be modeled. The first one is aleato-
ric uncertainty (or data uncertainty), which captures the noise inherent in the observa-
tions. Examples can be noise from sensors or motion blur due to low sampling frequen-
cies. This kind of uncertainty can be further partitioned into homoscedastic and 
heteroscedastic uncertainty. Homoscedastic uncertainty assumes constant noise over all 
input samples – such as inherent measurement uncertainties in sensor data – while 
heteroscedastic uncertainty assumes non-constant noise depending on each data  
point – such as blurry camera images during fast motion compared to non-blurry ones. 
Aleatoric uncertainty cannot be reduced even if more data is available.

In contrast to that, epistemic uncertainty (or model uncertainty) describes the uncer-
tainty about which model to choose for estimating the given data. Standard machine 
learning approaches simply take the maximum likelihood model to make a point 

Problems and Solutions
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estimate for new input data. If the full data distribution were available, this would be 
sufficient as the epistemic uncertainty would be zero. However, this is not the case in 
the vast majority of problems where a distribution of models better describes the 
underlying data distribution than a single maximum likelihood model.

3.1 
Calibration

For classification, one approach is to directly interpret the scores of the final softmax 
function as probabilities and calibrate these outputs so that their prediction scores 
match the probabilities of being the correct classes. This means that predictions with 
probability p also have an empirical probability (e.g., accuracy) of p.

A perfectly calibrated model would correspond to the green dashed line in Figure
2 while over- and underconfident models would correspond to the red and blue curves, 
respectively. Large increases in model capacity and the complexity of DNNs during the 
last years, e.g., rising depth, the use of more convolutional filters, and the use of batch 
normalization, have been found to negatively affect model calibration [27], which often 
leads to overconfident predictions. For calibrating these DNNs, [27] we can compare 
old calibration methods like histogram binning or beta calibration and suggest tempe-
rature scaling as a new straightforward method for minimizing the expected calibration 
error. Even though this approach significantly improves model calibration, it still does 
not present a reliable solution to the uncertainty problem, as the networks are calibra-
ted relative to a certain training dataset. However, for new examples too dissimilar to 
the training data distribution, the network is not well calibrated anymore, as has been 
shown in [70].

3.2 
Bayesian Neural Networks

The most common methods to account for uncertainty include Bayesian neural net-
works (BNNs), which usually apply a prior distribution over their parameters θ to 
compute the posterior distribution over the model parameters given the training data:

Uncertainty Estimation

Fig. 2: 

Calibration plot
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where

is the marginal likelihood of the data/evidence (targets given inputs) with all possible 
weights marginalized out. Unfortunately, the integral for calculating the marginal 
probability of the data p(D) is analytically intractable in practice, since the number of 
parameters in a neural network is very large, and we cannot expect the underlying 
distribution describing the data to be a known closed-form function. For the final 
prediction during inference time, marginal distribution can be computed as follows:

Where xi is a new input and yi  is the corresponding output of the neural network. Due 
to p(D) being intractable, there are two prominent approximation techniques: variatio-
nal inference and sampling methods. Variational inference methods try to approximate 
the true posterior over the model parameters with a different distribution from a 
tractable family (e.g., Gaussian) by finding the parameters of this distribution that 
minimize the Kullback–Leibler divergence to the true distribution. The problem with 
variational inference is that it has a very high bias, as we manually choose the form. On 
the other hand, sampling methods approximate the true distribution by averaging 
samples drawn from it. One such method is the Markov Chain Monte Carlo (MCMC) 
algorithm, which constructs a Markov chain with the desired distribution. Even though, 
in theory, MCMC would lead to a perfect approximation of the true posterior, it is 
computationally too costly for most DNNs to converge within an acceptable time [34].

3.3 
Full Bayesian Approaches

The first works on BNNs ([6], [36]) place an independent Gaussian prior for each weight 
in a neural network, and then learn the means and variances of these Gaussians using 
backpropagation. After training, the weight variances can be used to sample diverse 
networks and obtain diverse predictions as well as the corresponding estimate of 
epistemic uncertainty:

Uncertainty Estimation

Fig. 3:  

Schematic comparison of the 

weights of deep neural 

networks and Bayesian neural 

networks

p(θ|D) =
p(D|θ)p(θ)

p(D)

p(D) =

✂

θ

p(D|θ)p(θ)dθ

p(ŷi|xi, D) =

✂

θ

p(ŷi|xi, D, θ)p(θ|D)dθ
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A major drawback of this approach is that these networks require double the amount 
of parameters, since each weight consists of a mean and a variance instead of a single 
value.

3.4 
Monte Carlo Dropout

A more recent theoretical finding provides a Bayesian interpretation of the regulariza-
tion technique known as "dropout" [20]. The argument is that dropout could be used 
to perform variational approximations of a BNN with a Bernoulli distribution prior from 
which Monte Carlo sampling is done. In practice, this finding provides an easy way to 
turn a conventional DNN into a BNN by simply applying dropout during training and 
testing time. The empirical predictive mean and variance are calculated from multiple 
stochastic forward passes, where each forward pass can be seen as sampling from a 
posterior distribution over the network weights. Monte Carlo dropout is easy to 
implement and can be easily adapted to existing network architectures. Due to its simp-
licity, high scalability, and good generalization performance, this approach is widely 
used to tackle the problem of deriving reliable uncertainty estimations of DNNs. Monte 
Carlo dropout can be interpreted as a form of ensembles with shared network parame-
ters or, alternatively, as approximate Bayesian inference [20].

3.5 
Deep Ensembles

Ensembles of DNNs, i.e., deep ensembles, is a well-known method to improve predic-
tion accuracy. However, deep ensembles can also be used for uncertainty estimation 
[47]. Take a number of randomly initialized neural networks that are trained indepen-
dently on the same training data. To compute the predictive distribution, the individual 
prediction probabilities of all neural networks in the ensemble are averaged. Additio-
nally, [47] proposes to use proper scoring functions as loss functions and adversarial 
training to smooth the predictive distributions.

3.6 
Variance Propagation

Another approach for estimating epistemic uncertainty is to use noise injection at 
inference time to quantify trust in the model in a single shot [72]. It treats noise 
injected in the neural network as errors in the activation values and applies error 
propagation, as is done in other sciences like physics. The advantage is that it provides 
comparable results to Monte Carlo dropout while only requiring a single forward pass.

3.7 
Output Distribution Modeling

Another family of approaches to modeling uncertainty in DNNs assumes a certain 
probability distribution over the network outputs and uses the network output layers to 
directly predict parameters for such a distribution (e.g., Gaussian). Unlike Bayesian 
neural networks, these models only predict point estimates, as no marginalization over 
weights is done. However, by directly modeling the output as a distribution, it is 

The most prominent example of directly modeling the output as a distribution is the 
application of the softmax function, which is equivalent to a multinomial mass function 
on the final layer of the neural network for classification tasks. For regression tasks, [42] 

Uncertainty Estimation
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proposes to model the output as Gaussian-distributed by letting the model predict the 
mean µ = f (x) and variance σ2(x). By reformulating the mean-squared error loss func-
tion, the heteroscedastic aleatoric uncertainty can be directly learned from data:

where x is the input and f(x, θ) the mean prediction of the neural network for the 
Gaussian. Moreover, y is the regression target and σ(x, θ)  is the estimated variance of 
the output.

3.8 
Higher-Order Conjugate Priors

In addition to directly predicting the output probability distributions, several works 
propose to estimate their higher-order conjugate priors. Prior networks [61] explicitly 
distinguish distributional uncertainty (is there a mismatch between input data and 
training distribution) from aleatoric (is the data difficult to classify) and epistemic (how 
well does the model fit the data) uncertainty. Distributional uncertainty is modeled by 
parameterizing a prior distribution over predictive distributions. For classification, this is 
done by using a Dirichlet distribution over the categorical distribution of the classes. 
The parameters of the Dirichlet distribution are trained using a multitask loss that 
consists of minimizing the KL divergence between a sharp Dirichlet distribution and the 
model for in-domain data as well as a flat Dirichlet distribution and the model for 
out-of-domain data.

We want to highlight here that training a prior network still requires having access to 
some out-of-distribution data. The authors propose to generate synthetic data at the 
boundary of the in-domain region.

Evidential deep learning [84] is inspired by the Dempster–Shafer theory and represents
a sampling-free approach.

Similar to prior networks, for classification tasks, the parameters of a Dirichlet distribu-
tion are learned, from which the total evidence for each of the classes and the episte-
mic uncertainty regarding the prediction as a whole can be calculated. The authors also 
conducted some experiments regarding out-of-distribution detection and showed that 
their method generally assigned higher uncertainties to out-of-distribution inputs.

Fig. 4: 

Desired behaviors of a distribution over distributions, [61]

Uncertainty Estimation

ŷ ∼ N f(x, θ), σ2(x, θ))

Lreg(x, θ) =
1

2σ(x, θ)2
||y − f(x, θ)||2

2
+

1

2
log σ(x, θ)2
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3.9 
Ensemble Distillation

A major problem for epistemic uncertainty estimation approaches is the need for 
sampling in the most prominent ensembling methods such as Monte Carlo dropout or 
deep ensembles, as described above. This is especially problematic for real-time applica-
tions like autonomous driving as the inference speed is reduced by a factor correspon-
ding to the number of sampled used for estimating the posterior. There are approaches 
to distill an ensemble of models into a single model to yield the mean predictions of 
the ensemble ([37], [44]). However, while these models perform well on collapsing an 
ensemble of conditional distributions into a single point estimate conditional distribu-
tion over classes, they completely discard the information about the diversity of the 
models. As a result, epistemic uncertainty can no longer be estimated. In contrast, [62] 
defines a novel task ensemble distribution distillation, where the goal is to distill the 
whole distribution of an ensemble instead of just a point estimate. For the classification 
task, they distill an implicit distribution over distributions (ensemble of predictions over 
classes) into an explicit distribution over distributions (Dirichlet distribution over predic-
tions over classes) by using a single prior network model, as in [61]. [58] generalizes 
this approach to allow for freedom in choosing the parameterization of the output 
distribution, which makes it possible to also distill models for other tasks than classifica-
tion, such as regression.

4 
Out-of-Distribution Detection

Out-of-Distribution (OOD) methods detect inputs that are conceptually different from 
the training dataset. In the real world, a deployed model is often confronted with novel 
data that was not present in the training dataset. This can be samples from new classes 
or even samples that contain completely new concepts.

To formalize this, let PD and PQ be two distinct data distributions, where PD is the 
in-distribution and PQ is the out-distribution. We train a model on a dataset sampled 
from PD. The task of OOD detection is to determine if an input sample is from the 
in-distribution or not when the model is queried on a testing dataset consisting of 
in- and out-of-distribution samples from PDxQ.

When confronted with unknown data, a machine learning model cannot make correct 
and reliable predictions. Neural networks tend to make overconfidently wrong predic-
tions for OOD inputs [27, 32]. To use machine learning models in safety-critical applica-
tions, it is crucial to detect these OOD inputs. When a machine learning model knows 
when it is confronted with unknown input data, it can, e.g., ask for human input or 
choose a more reliable safety path.

An important characteristic of OOD methods is whether OOD data is required during 
training. Using OOD data for training imposes a strong requirement on the problem, 
since it is often difficult to acquire sufficient suitable OOD data. Since any data not 
present in the training dataset could be OOD, using a specific dataset as OOD training 
data could induce a bias in the learning process.

We note here that many of the methods discussed in the literature are proposed under 
different names or from different viewpoints, e.g., open set recognition, anomaly 
detection, novelty detection, rejection, zero-shot learning, uncertainty estimation, and 
all are closely related or equal to out-of-distribution detection. We will review some of  
the most popular and best-performing methods in the following section, focusing on 

Out-of-Distribution Detection
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the task of multiclass classification.

4.1 
Softmax Scores

A straightforward approach is to interpret the softmax scores of a classifier as probabili-
ties, where

and fi(x) are the logits for class i and input x for C classes. These softmax scores are 
then used to detect OOD inputs by simple thresholding, as shown in the equation 
below.

It has been shown that ID data tends to have larger softmax scores than OOD data. 
This fact is used to establish a simple baseline on OOD detection by thresholding the 
softmax score [32]. However, softmax probabilities are often overconfident and not well 
calibrated [20].

Uncertainty estimation: Many of the presented methods use uncertainty estimates to 
detect OOD inputs, where inputs with high uncertainty are flagged as OOD [83].

A Bayesian approach to OOD using uncertainty estimation is proposed in [26]. A neural 
linear model (NLM) is trained, where the neural network features are learned by 
augmenting the dataset with generated OOD samples that lie on the edge of the 
decision boundary. These samples are generated using a normalizing flow generative 
model. It has been shown that the NLM uncertainties are comparable to uncertainties 
from Gaussian process classification.

The ODIN detector [54] uses temperature scaling and adversarial learning to make the 
softmax probabilities a better score for distinguishing ID and OOD samples. In the 
original paper, the temperature scaling parameter is trained on a OOD validation 
dataset. An extension of it, generalized ODIN [39], proposes to explicitly model the 
in-distribution by decomposing the class posterior probability. It has been shown that 
this method achieves competitive results without the need for OOD data during 
training.

4.2 
Outlier Exposure

In outlier exposure [33], large amounts of OOD data are used to train an OOD detector 
to discriminate between  PD and PQ. It has been shown that this model generalizes 
well to unseen disjoint OOD data. The representations are learned by an auxiliary 
classification task, where the loss function is of the form:

where Lout is the cross-entropy loss between the predictive distribution and a uniform 

Out-of-Distribution Detection

yi =
exp fi(x)

∑
C

j=1
exp fj(x)

,

g(y; δ) =

{
1 if maxi yi ≤ δ

0 else

L = Lin(Xin, Yin) + Lout(Xout),

http://www.iks.fraunhofer.de?wmc=wpada21


Fraunhofer IKS Machine Learning Methods www.iks.fraunhofer.de

distribution. The Lin term can be chosen depending on the auxiliary task. In the case of 
a classification auxiliary task, the Lin can be the cross-entropy. For density estimation, 
Lin can be a ranking loss based on the likelihood of ID and OOD samples. Related to 
outlier exposure, the authors in [5] introduce guaranteed upper bounds around the 
l∞-ball of an input sample. This ensures not only low confidence of OOD samples but 
also low confidence of samples that are close to it, which makes the OOD detection 
more robust against adversarial attacks.

4.3  
Density Estimation

A straightforward approach to OOD detection is to estimate the probability 
density of the in-distribution dataset and compare the likelihoods of predictions to 
determine if a sample is OOD. Likelihood-based generative models, like PixelCNN 
[82, 91, 69] and GLOW [43], estimate the probability density of the training data 
in an unsupervised fashion and allow for exact log-likelihood computation. 
However, despite their good results in terms of likelihood estimation, when 
applied to OOD detection, these models still perform worse than other state-of-
the-art OOD detectors [13, 67, 85].

4.4 
Contrastive Learning for ODD Detection

Contrastive learning aims to learn a meaningful embedding space by contrasting 
positive samples with augmented samples and negative samples. Usually, the loss is 
computed by considering each sample and its sets of positive and negative samples, 
where the positive samples are augmented version of the original sample. The contras-
tive loss enforces that the current sample and all all positive samples in the embedding 
space are pulled together, while at the same time pushing them apart from the set of 
negative samples.

This learned embedding space can then be used to improve the performance of various 
downstream tasks. In the case of OOD detection [95], the embedding is learned by 
combining the contrastive loss and a classification loss. The contrastive loss uses 
augmented input samples and learns to pull the augmented images based on the same 
image together and push all other images away. Note that even samples from the 
same class are pushed apart. To perform OOD detection, the embedding space is used 
to estimate a Gaussian distribution for each class. To determine if a sample is OOD, the 
maximum probability is calculated across all classes. All samples that have a maximum 
probability below a threshold are OOD.

Another approach using contrastive learning is employing specific distribution-shifting 
transformations for generating negative samples [88]. The authors show that these 
augmentations improve OOD performance, a combination of cosine similarity to all 
training samples and the norm of the latent representation is used. An alternative score 
is proposed that additionally incorporates the shifting transformations.

4.5 
Selective Prediciton and Rejection

Another approach is rejection [3, 14, 21], where a machine learning system can chose 
to reject an input in favor of making wrong predictions. During training, a model is 
allowed to reject samples for a cost instead of making wrong predictions that would 
yield a larger loss. More sophisticated methods train a separate rejection function and 

Out-of-Distribution Detection
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learn an optimal threshold parameter or other performance guarantees. One can argue 
that rejection does not solve the general OOD detection problem, since it only safegu-
ards against inputs that would be wrongly recognized and not against unknown inputs.

4.6 
Open Set Recognition

Open set recognition (OSR) is closely related to OOD detection. Like OOD detection, 
OSR solves the problem of unknown classes during test time. However, OSR has a more 
defined problem formulation [9, 23] compared to OOD detection and some well-
known OOD methods do not satisfy the properties imposed by OSR. The essential 
properties for OSR are bounding the open space risk and balancing it with the empirical 
risk. Bounding the open space risk minimizes the volume of space represented by a 
recognition function, which determines known positive samples. An important factor 
here is still to allow the classifier to generalize well enough. One approach to OSR using 
deep learning was proposed in [4], where the distances between the activations of the 
penultimate layers of an input sample and the mean activations over all correctly 
classified training samples are used to determine if a sample is OOD.

5 
Object Detection

Like many fields utilizing machine learning methods, most research efforts focus on 
improving model performance on some well-established benchmark datasets, like 
COCO [57], PASCAL VOC [18] or KITTI (mostly for 3D object detection) [22]. Neverthel-
ess, even though uncertainty estimation methods are more explored in image classifica-
tion, they are also gaining increasing popularity in the field of object detection, as there 
is a serious need for reliable predictions in many applications. The perception pipeline 
of an autonomous system can involve 2D or/and 3D object detection models in multi-
ple variations and combinations. Since the methods for extracting features and uncer-
tainties are different in 2D than in 3D, they are discussed in separate sections.

5.1 
2D Object Detection

2D object detection is an essential part of perception tasks in many pipelines. The goal 
is to detect the bounding boxes covering objects in images accurately and to classify 
them correctly. RGB images provide context-rich representation of the environment and 
are, therefore, used in many applications, such autonomous driving and robotics. This 
section discusses general state-of-the-art methods for 2D object detection in depth. 
Additionally, several uncertainty estimation methods in 2D object detection are high-
lighted.

5.1.1 
Methods

This section briefly discusses current state-of-the-art 2D object detection methods. An 
object detector is usually composed of two parts: a backbone, which is mostly a CNN 
pretrained on a large classification dataset, such as ImageNet [15]; and a head, which  
predicts classes and bounding boxes for objects. The backbone network could be VGG 
[87], ResNet [30], DenseNet [40], EfficientNet [89], CSPNet [92] for large or medium-
sized computing resources, or smaller networks, such as MobileNet [38] or SqueezeNet 
[41], for applications on low-power devices. For the head, approaches are usually 
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separated into two categories: one-stage and two-stage object detectors. The most 
popular two-stage detectors are the family of R-CNN models, including fast R-CNN 
[24], faster R-CNN [80], and Libra R-CNN [71]. Two-stage detectors use a region 
proposal network to generate regions of interests in the first stage and utilize these 
proposals in the classification and bounding box regression part. These models achieve 
the highest accuracies but are typically much slower than one-stage detectors. As for 
one-stage detectors, the most representative models are SSD [60], RetinaNet [56], 
EfficientDet [90] and YOLO ([79], [76], [77], [7]). One-stage detectors directly predict 
the classification and regression output for a given configuration of predefined loca-
tions. Unlike two-stage detectors, they do not utilize a second regional proposal 
network to find regions of interest, instead they directly map the input to the number 
of defined output nodes.

Most one-stage and two-stage detectors are anchor-based, meaning they use a 
predefined set of boxes for each region of interest (in one-stage detectors, mostly grid 
cells of feature maps; in two-stage detectors, the output of an RPN) with a variety of 
aspect ratios and scales to match them to the ground truth with the highest respective 
intersection over union (IoU). However, anchor-free one-stage detectors like CenterNet 
[16]or  CornerNet [49] have also recently gained some popularity. While two-stage 
methods tend to be more accurate, one-stage detectors are much faster, reaching 
inference time rates that are suitable for real-time applications. Recently developed 
object detectors often contain some layers between backbone and head, which are 
usually used to aggregate feature maps from different stages. 

These layers are mostly composed of several bottom-up and top-down paths, and are 
usually referred to as the neck. Models containing such a mechanism include feature 
pyramid networks (FPNs) [55], path aggregation networks (PANs) [59] and bipolar 
feature pyramid networks (BiFPNs) [90].

Additionally, almost all detectors apply some sort of suppression algorithms, such as 
non-maximum suppression or soft non-maximum suppression [8], at the end of each  
prediction to suppress redundant outputs; see Figure 6.

The loss function for training 2D object detectors is primarily the negative log-likelihood 
per class for classification and the Huber loss for bounding box regression. Neverthel-
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Fig. 5: 

Object detection pipeline for different models [7] 

Fig. 6: 

Non-maximum suppression 
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ess, recently, the idea of directly training on an IoU-related objective [100, 81] with the 
ground truth has gained popularity, as models trained with this kind of regime have 
improved in accuracy.

Recently, another very distinct but also highly promising approach to 2D object detec-
tion using transformers has gained a lot of attention and popularity. Detection transfor-
mers (DETR, [11]) reformulate object detection as a direct set prediction problem. They 
use learned object queries to reason about the relations of the object together with the 
global image context to directly output a final set of predictions. In contrast to other 
object detection methods, there is no need for hand-crafted components, such as 
anchor grids or non-maximum suppression. The current drawback of this approach is 
the high computational cost of calculating the attention matrix over a two-dimensional 
feature map representation. However, while other methods at the time of writing still 
outperform transformer-based methods, there are good chances that transformer-
based end-to-end approaches could become state-of-the-art in the future.

5.1.2 
Uncertainty in 2D Object Detection

In 2D object detection, there are, apart from epistemic and aleatoric uncertainties, two 
additional types of quantifiable uncertainties: label and spatial uncertainty. The uncer-
tainty about the label is equivalent to the case in classification problems, where it 
describes the confidence a prediction has that a given detection has a certain class. 
Spatial uncertainty, on the other hand, represents the uncertainty associated with the 
position of the detected bounding box, which is higher for boxes that are expected to 
deviate more from the ground truth and vice versa.

In order to estimate epistemic uncertainty, similar approaches to standard classification 
and regression tasks are applied in 2D object detection. In [29, 65], the authors applied 
Monte Carlo dropout, as described in Section 3, to object detection. The uncertainty is 
then estimated as a sample statistic from spatially correlated predictions. Following 
their work, [66] examined the effect of several association and box-merging strategies 
on the quality of the uncertainty estimates. It was shown that the black box method 
from [65], which uses NMS, gives weakly correlated results with respect to the bound-
ing box uncertainty. The main reason for this is the removal of redundant information 
due to the NMS algorithm.

For modeling aleatoric uncertainty for the bounding box regression tasks, various 
deviations of output distribution modeling approaches as described in Section 3 are 
used. Below is a recap of the most common formulation for regression tasks:

By placing a Gaussian distribution over the predictions of the bounding box coordinates 
with the direct prediction of the diagonal elements of the covariance matrix, this 
formulation was directly used by [50] as the loss for the bounding box regression in 2D 
object detection. [31] incorporates bounding box variances to calculate the Kullback–
Leibler divergence between the predicted Gaussian distribution and the ground truth 
box that is also modeled as a Gaussian, with σ = 0, which results in a Dirac delta 
distribution.

Metrics: The most commonly used metric to evaluate the performance of 2D detec-
tors, introduced in [18], is mean average precision (mAP), which measures the average 
of the maximum precision values at different recall values over all classes and 
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thresholds. However, average, precision-based methods rely on fixed IoU thresholds to 
determine positive and negative detections, causing an additional dependency on the 
threshold hyperparameter. Furthermore, the label score is taken as detection-ranking 
evidence instead of a spatial quality measure, leading to suboptimal detection assign-
ments. Another problem with mAP is the metric's lack of uncertainty awareness , as 
confidence only plays a role in determining if a sample is positive, transforming some 
kind of confidence value attached to each detection into a binary decision without 
considering the exact value itself. For example, if the threshold of a detection is defined 
as positive for a label score above 0.5 and negative below, a prediction of 0.51 confi-
dence will have the same impact on the score as one with 0.99, even though the 
values differ greatly. Another similar problem is the definition of a true positive, which 
also requires hand-selecting the threshold.

To avoid these problems, a new uncertainty-aware metric was introduced by [28], 
called probabilistic detection quality (PDQ). This metric has a more continuous approach 
to defining the quality of the predictions. Compared to mAP, it does not need a 
hand-chosen threshold parameter. Instead, the metric consists of two components: 
label quality and spatial quality.

Label quality measures how effectively a prediction identifies the correct class label. It is 
defined as the probability QL estimated by the detection model for the ground truth 
class of the object. This way, the entire probability mass associated with the correct 
label is considered in a continuous way. Spatial quality QS is composed of a foreground 
loss LF and a background loss lB, and measures how well a detection captures the 
ground truth spatially by taking into account the spatial probabilities for individual 
pixels expressed by the detection model; see Figure 8.
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Fig. 7: 

Prediction on an ensemble of 

seven SSD object detectors, 

with red showing the standard 

deviation for the bounding 

box locations

Fig. 8: 

Object locations are represen-

ted as probabilistic bounding 

boxes, where corners are 

modeled as 2D Gaussians, 

giving the uncertainty for each 

pixel [28] 
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5.2 
3D Object Detection

For the task of 3D object detection, there is a large variety of approaches to achieving 
state-of-the art performance on common benchmarks, such as KITTI [22] or the 
recently published NuScenes dataset [10]. The reason for the greater diversity of 
methods in comparison to 2D object detection is that there exist multiple data formats 
to capture the environment – unlike with 2D, where images are the only source of 
information. Most methods work with data from a single sensor or a combination of 
multiple sensors. The most commonly used sensors are lidar, mono/stereo/RGB-D 
camera(s) and radar. The number of classes available for 3D object detection is also 
considerably lower compared to 2D object detection. The classes available in 3D 
datasets are mostly limited to a subset of classes relevant to use in autonomous 
vehicles. The most common labels are cars, cyclists and pedestrians.

5.2.1 
Methods

As mentioned before, the variety of methods that can be used is very large. There are 
many ways the data from different sensors can be represented, processed and fused 
with a large number of different network architectures. In this section, we detail some 
of the most important approaches and present previous works applying each strategy. 
There are multiple representations of data for 3D object detection. Many methods use 
2D representations, which can be directly captured by standard and RGB-D cameras, or 
extracted from lidar or radar data by applying transformation methods. A different 
approach is to directly process 3D point cloud data. Other methods fuse together 
multiple representations from one or multiple modalities to extract more meaningful 
features.

Methods Based on Front-View Images: Methods using 2D representations can be 
divided into two classes: those based on a front view and those based on a bird’s eye 
view. Front view representations can be RGB images, sparse/dense depth maps, 
intensity maps or spherical maps; see Figure 9. For 3D object detection, these maps 
have the advantage of representing each 3D point in a dense and compact manner, 
which can also be helpful for tasks such as point cloud segmentation [96]. [52] converts 
point clouds into front-view 2D maps in order to apply 2D detectors to localize objects 
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Fig. 9: 

Different 2D views, [19] 
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in the front-view images. The advantage of front-view maps is that it can be directly 
fused with camera images if their sizes are the same. Nevertheless, such representa-
tions often leave many pixels empty. To deal with this issue, some methods have been 
proposed to up-sample sparse feature maps, such as nearest neighbors [1] or bilateral 
filters [73]. More recently, [64] has used a multichannel range view image from an 
RGB-D camera as the input and has applied a fully convolutional neural network to 
predict a multimodal distribution of 3D boxes for each point. Another very interesting, 
new branch of approaches converts RGB images into a pseudo-lidar [93, 99] represen-
tation by estimating the image depth and applying the more powerful bird’s-eye view 
methods on these generated point clouds.

Methods Based on Bird’s-Eye View: In contrast to front-view representations, the 
bird’s-eye view preserves the length and width of objects and avoids occlusion prob-
lems. It also provides the position of objects directly on the ground plane, making the 
localization task easier. MV3D [12] is the first method to convert point cloud data into a 
bird’s-eye view representation. This is done by discretizing the projected point cloud 
into a 2D grid on the ground plane. To capture more detailed height information, the 
point cloud is divided into a fixed number of slices in the vertical direction to obtain 
height maps. These maps are then concatenated with intensity and density maps to 
obtain multichannel features. ComplexYOLO [86] uses a YOLO network [79] together 
with an angle encoding approach to increase runtime and orientation performance. 
Pixor [98] is a fast, single-stage, proposal-free detector that is designed to efficiently 
make use of specific height-encoded bird’s-eye view data. Another approach called 
Pointpillars [48] uses PointNet features [75] to encode a point cloud into a sparse 
pseudo-image. These features are further processed by a 2D convolutional backbone 
and an SSD-style detection head for detecting and regressing 3D boxes.

Voxel-Based Methods: Another way of representing input data is to divide the 3D 
space into equally-shaped 3D voxels and assign the points from a point cloud to the 
discretized voxels [51, 17, 102]. This representation allows the rich 3D information to 
be preserved. However, this comes at a high computational cost, as many voxels are 
empty due to the sparsity of many point clouds. [102] groups point cloud data into 
voxels, extracts PointNet features by voxel [75] using a voxel feature encoding layer and 
then converts these features into a dense tensor to be processed using 3D and 2D 
convolutional networks. The problem of this approach is the expensive 3D convolu-
tions, where the computational effort has a cubic scaling with respect to the voxel 
resolution. In order to reduce the complexity, [97] uses sparse 3D convolutions [25] in 
combination with other improvements to drastically reduce inference time for a 
VoxelNet-based approach. The Pointpillar-based [48] approach described in the bird’s-
eye view part is very similar to voxel-based methods, with the difference being that the 
height dimension is skipped entirely, making 3D convolutions unnecessary.

Fusion-Based Methods: The majority of recent works combines camera images with 
lidar point clouds to extract more meaningful features and improve performance. Many 
approaches fuse camera and lidar features extracted from 2D convolutions. To accomp-
lish this, these methods project lidar points onto a 2D plane to further process the 2D 
feature maps from camera and lidar data together through 2D convolutions. In MV3D 
[12], point cloud data is converted into a front view and a bird’s-eye view, and then 
feature maps extracted from both point cloud maps are fused with an image feature 
map. Another approach uses 2D object detection to constrain the space for possible 
objects in 3D and then uses PointNet features [75] in these constrained regions for 3D 
detection [74]. Other fusion-based approaches cluster and segment 3D lidar points to 
generate 3D region proposals by using a 2D lidar representation to extract features for 
fusion ([68], [63]). Other works project lidar points onto the camera plane or RGB 
images onto the bird’s-eye view plane in order to join the features together ([53]) or 
fuse bird’s-eye view features directly with RGB images [46] in conjunction with a 
regional proposal network for 3D proposals, similar to [80] for 2D.
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6 
Application of ML Methods

The aim of the presented ML methods is to assist in ensuring the safety of a perception 
system for autonomous vehicles. To this end, we investigated the use of uncertainty 
quantification for object detection, one of the essential perception tasks of autono-
mous systems. The additional reliability information gained from the uncertainty 
quantification can be utilized to increase the overall safety of the system [34]. Figure 11 
shows the envisioned concept for incorporating the uncertainty information in a 
perception pipeline. 

Fig. 10: 

Runtime vs. precision comparison of different 3D object detectors on the KITTI bird’s-eye view test 

dataset [19]

Application of ML Methods

Fig. 11: 

The envisioned perception pipeline, integrating reliability information such as uncertainty 

estimates
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The overall perception system is thus split into two separate paths: a high-performance 
path based on ML methods and a fallback path relying on classical, non–data-driven 
approaches. The subsystems in the upper high-performance path are extended by 
additional reliability information, such as uncertainty estimates. At runtime, a dynamic 
dependability management system takes this reliability information into account and 
combines it with additional sensor information and other monitoring systems. In each 
given situation, it dynamically assesses the reliability of the outputs of the high-perfor-
mance path and, if required, switches to the safety path. The safety path is intended to 
provide basic functionality to perform minimal-risk maneuvers, e.g., coming to a stop 
on the hard shoulder of a freeway, ensuring that the vehicle is always in a safe state.

In order to derive results on the general suitability of the methods for assisting in 
assurance, we conducted different evaluations by benchmarking the underlying feature 
extractors of the object detector and comparing it to other state-of-the-art approaches 
with respect to safety metrics.

6.1 
Benchmark of Uncertainty Quantification Methods for DNNs 
on the Task of Image Classification

To find suitable uncertainty estimation approaches that can be considered further for 
robust object detection, we first performed two benchmarks on the underlying task of 
image classification. In the first [35], we compared four uncertainty quantification 
methods for DNNs – Monte Carlo dropout, deep ensembles, evidential deep learning 
and learned confidence – against the baseline of assuming the outputs of the softmax 
activations used for classification as confidences. We evaluated their performance 
across three standard image classification datasets – MNIST, CIFAR-10 and the German 
Traffic Sign Recognition Benchmark– and two network architectures – a simple six-layer 
CNN and VGG16. For this, we used evaluation metrics that also take into account 
safety-related aspects: network calibration, which measures how well confidences are 
calibrated; and remaining error rate vs. remaining accuracy rate, a metric we introdu-
ced to capture the trade-off between performance and safety when discarding inputs 
based on a confidence threshold.

Figure 12 shows the results of the trade-off between remaining accuracy and remaining 
error based on different thresholds for the confidence for the six-layer CNN. Deep 
ensembles thus consistently outperform the other methods, followed by learned 
confidence. Monte Carlo dropout can improve upon the softmax baseline for CIFAR-10, 
however, it performs the worst on GTSRB. Evidential deep learning in this benchmark 
suffered from unstable training, which is why it is excluded from the GTSRB results. In 
our second benchmark, shown later, we resolved this issue, showing the potential of 
this method. For VGG-16, we saw similar results for most methods. One exception was 
Monte Carlo dropout, which showed very little variance in the individual predictions, 
thus performing very similarly to the softmax baseline. We presumed the reason for this 
to be overparametrization, i.e., the network had the capacity to learn various redun-
dant paths, which, in turn, were robust – in a negative sense – to the dropout masks at 
inference. Figure 13 shows the calibration of the individual uncertainty estimation 
approaches. As expected, softmax is significantly overconfident, while deep ensembles 
and Monte Carlo dropout are mostly well calibrated. Both sampling-free approaches, 
evidential deep learning and learned confidence, are highly underconfident – a pro-
perty beneficial to safety but that severely impacts the performance of the network. To 
summarize, deep ensembles consistently showed the best results. However, due to the 
increased computational cost in training and inference, learned confidence as a 
sampling-free approach may also be of interest in further studies.

Application of ML Methods
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In our second benchmark [83], we investigated whether the same uncertainty quantifi-
cation methods used in the first benchmark were suitable for detecting novel concepts 
in input images that otherwise would lead to false positives. To this end, for each 
method, we trained three different architectures—VGG16, SqueezeNet and Efficient-
Net—on three different datasets—CIFAR-10, German Traffic Sign Recognition Bench-
mark and NWPW-RESISC45. For the evaluation, we chose an out-of-distribution 
dataset for each training dataset: CIFAR-100, Belgian Traffic Sign Dataset and a diffe-
rent split for NWPU-RESISC45. We investigated whether discarding predictions based 
on uncertainty allows for rejecting novel inputs without impacting overall performance 
too much.

Figure 14 shows some results from the benchmark. Ideally, an uncertainty quantifica-
tion approach suitable for out-of-distribution detection would minimize the difference 
between the blue and green curves. It shows that deep ensembles again consistently 
showed the best results, closely followed by evidential deep learning, which is a 
sampling-free approach. However, it was also evident that, for a truly reliable novelty 
detection approach, other, more specific measures are required, as a significant portion 
of out-of-distribution inputs could not be discarded by any method without greatly 
impacting overall performance.

The benchmarks were performed on the task of image classification and intended to 
find suitable approaches to transfer to the downstream task of object detection, for 
which we developed a specific uncertainty quantification approach. To this end, we 
decided to further investigate in the direction of deep ensembles how to transfer them 
to object detection and how to minimize their computational complexity.

Application of ML Methods

Fig. 12: 

Trade-off between remaining 

accuracy and remaining error 

for the six-layer CNN with 

different uncertainty quantifi-

cation approaches
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Fig. 13: 

Results for the out-of-distribution benchmark, showing remaining error rate (RER) vs. remaining 

accuracy rate (RAR) for EfficientNet and SqueezeNet on the GTSRB, CIFAR-10 and NWPU-RESISC45 

datasets. The plots show the performances first on the ID dataset (blue), then on a dataset 

consisting of ID and OOD samples (green). The lower bound (black) represents the worst-case 

scenario, where the network fails to reject any of the OOD samples

Fig. 14: 

Confidence calibration of the 

six-layer CNN on CIFAR-10 with 

different uncertainty quantifi-

cation methods 
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7 
Outlook

Machine learning is a core technology for making autonomous systems become reality 
in many application areas. For this, the key is to reliably integrate them into safety-
critical systems, such as autonomous cars or collaborative robots. 

We investigated current methods and approaches for enhancing the reliability and 
robustness of ML-based perception. On this basis, we researched supplementary 
methods to apply them successfully in autonomous systems’ architectures. Our evalua-
tions of diverse autonomous driving scenarios show the enhancements in ML-based 
perception using these approaches. When it comes to changing environmental condi-
tions and road scenes, we achieve more reliable detection rates. 

Nevertheless, from a safety perspective, the introduction of ML into safety-critical tasks 
still requires application-specific solutions. Therefore, our research focuses on develo-
ping feasible solutions for real-world systems. We utilize our own building blocks and 
patterns as well as those provided by others as much as possible, enabling the advanta-
ges of ML in the products of today and tomorrow.

Outlook
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